如何判断强化学习算法是否收敛

如何判断强化学习算法是否收敛

1. 策略熵

  • 对于随机性策略(PPO等)可以用策略熵来表示策略是否“确定”。在训练过程中随着策略提升,策略变得越来越确定,此时熵应该是随着逐渐降低的,熵曲线趋于平缓。

2. loss指标(网络收敛好坏)

  • 这是DL中的直观指标,虽然不能直接用在DRL来说明策略好坏,但loss是在一直下降还是已经趋于平缓了,可以一定程度上说明网络模型的学习程度,看模型是“学会了”还是“学废了”,趋于平缓可能就是已经训练差不多了,当然“训练差不多”不代表“策略最优”,有些可能loss还在掉,但是策略表现改进不大一直很差(即时已经训练很久)。

3. reward指标(更常用)

  • 这是一个比较直观的指标,但是需要定义清楚是否能直接反应我们策略好坏。reward大多是对于状态之间转移的即时奖励,和整个决策规划的好坏不能直接等价。以下以“DRL用于agent决策导航”为例,我们目标是在最短时间到达目标点同时避障。
  • 在训练过程中,DRL策略在一个episode下获得的平均奖赏没有明显变化时,可以认为DRL训练近似收敛
  • 如果是dense reward,靠近目标点+reward,远离给-reward,按照距离变化程度乘一个系数,比如靠近1m给+1,靠近2m给+2,远离同理。这时候如果以“单条轨迹的累计折扣报酬”这个rewad指标来对比策略好坏,就不是很合理,因为那种“单步报酬不多但是轨迹长”的决策路径就会变成“最优reward轨迹”。所以应该以“一条轨迹的单步平均reward”作为指标,因为“最短时间达到目标点”这个目标可以转换成“轨迹短(决策步数短、时间短)”+“累计报酬多(每步的靠近多,路径短)”这两个目标。平均reward可以很好表示这个要求。
  • 如果是sparse reward,比如只有最后到达了才有+1、碰撞/超时有-1,过程动作都让agent去探索。这时候可能很长时间reward指标是接近于0的,或者一个很小的负数。压根训练不出来(当然也不知道是真-训不出来还是训练时间太短),这时候用reward指标是很难看出一个所以然的。

4. 其他

  • 和具体场景结合的一些指标,比如游戏中各种reward指标的一个平均reward,游戏里面agent的血量、存活率等等。(采用一些可以进行评价的指标)
  • 有些场景下设置了学习率随训练轮次逐渐减小的trick,也会影响一些收敛判断。
### 如何使强化学习训练过程中的收敛曲线更加平滑 为了实现更平滑的强化学习收敛曲线,可以从多个角度入手优化模型性能和可视化效果。 #### 1. 使用经验回放机制 引入经验回放能够有效缓解样本之间的关联性,使得每次更新所使用的数据分布更为均匀。这不仅有助于稳定算法的学习过程,还能间接促进收敛曲线变得平稳[^1]。 #### 2. 应用优先级经验回放 相比于普通的随机抽样方式,采用基于重要性的加权采样——即优先选取那些对当前策略改进最有帮助的经验片段作为训练集的一部分,可以进一步提升学习效率并减少噪声干扰带来的波动影响[^4]。 #### 3. 平滑处理损失函数或回报信号 对于某些特定的任务场景而言,在不影响最终决策质量的前提下适当降低即时反馈强度(比如通过指数衰减因子),或是直接对接收到的奖励值做简单的移动平均滤波操作,均有利于获得较为理想的光滑化趋势线[^5]。 ```python import numpy as np def smooth_rewards(rewards, weight=0.9): last = rewards[0] smoothed = [] for point in rewards: smoothed_val = last * weight + (1 - weight) * point smoothed.append(smoothed_val) last = smoothed_val return smoothed ``` 此代码实现了简单的一维指数加权移动平均过滤器来平滑原始序列`rewards`的数据点集合。 #### 4. 调整超参数配置 合理设置诸如学习率、批量大小以及探索策略等关键因素同样至关重要。过高的初始学习速率可能导致权重剧烈振荡;而较小批次尺寸则容易造成估计偏差过大等问题。因此建议依据具体应用场景灵活调节这些变量直至找到最佳组合方案为止。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值