随机变量

第二章随机过程的基本定义

随机过程的定义

随机过程论的产生与发展:需要用一簇无穷多个相互有关的随机变量去描述自然界的随机现象。
定义:
A A A为随机试验, S = { e } S=\{e\} S={e} 为样本空间,如果对于每个参数 t ∈ T , X ( e , t ) t \in T,X(e,t ) tT,X(e,t)为建立在S上的随机变量,且对于每个 e ∈ S , X ( e , t ) e \in S,X(e,t ) eS,X(e,t) t t t的函数,那么称随机变量族
{ X ( e , t ) , t ∈ T , e ∈ S } \{X(e,t), t\in T,e\in S\} {X(e,t),tT,eS}
为一个随机过程,简记为 { X ( t ) , t ∈ T } \{X(t), t\in T\} {X(t),tT} X ( t ) X(t) X(t).

  • 状态集/状态空间:随机过程 X ( e , t ) X(e,t ) X(e,t)的一切可能取值。
  • 参数集/参数空间:参数t的变化范围。

随机过程的分布及其数字特征

一维分布函数

{ X ( e , t ) , t ∈ T } \{X(e,t), t\in T\} {X(e,t),tT}为随机过程,对任意固定的 t ∈ T t\in T tT,及实数 x ∈ R x\in R xR,
P ( X ( t ) ≤ x ) , t ∈ T P(X(t)\le x), t \in T P(X(t)x),tT 为该随机过程的一维分布函数。

二维分布函数

{ X ( e , t ) , t ∈ T } \{X(e,t), t\in T\} {X(e,t),tT}为随机过程,对任意两个时刻 t 1 , t 2 ∈ T t_1,t_2\in T t1,t2T,及实数 x 1 , x 2 ∈ R x_1,x_2\in R x1,x2R,
P ( X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 ) P(X(t_1)\le x_1,X(t_2)\le x_2) P(X(t1)x1,X(t2)x2), 为该随机过程的二维分布函数。

根据上述类似地定义随机过程的N维分布函数。随机过程的 N维分布函数可以近似地描述随机过程的统计特性,n越大则该描述越完善。
有限维分布函数族具有此存在定理:
在这里插入图片描述

随机过程的数字特征

  • 对于任意给定的 t ∈ T t\in T tT E X ( t ) EX(t) EX(t)存在,则称他为随机过程的均值函数,记为 m x ( t ) m_x(t) mx(t)
    m X ( t ) = E X ( t ) m_X(t)=EX(t) mX(t)=EX(t)

  • 对于任意给定的 t ∈ T t\in T tT E X 2 ( t ) EX^2(t) EX2(t)存在,则称他为随机过程的均方值函数,记为 ψ X 2 ( t ) \psi^2_X(t) ψX2(t)
    ψ X 2 ( t ) = E X 2 ( t ) \psi^2_X(t)=EX^2(t) ψX2(t)=EX2(t)

  • 对于任意给定的 t ∈ T t\in T tT E ( X ( t ) − m x ( t ) ) 2 E(X(t)-m_x(t))^2 E(X(t)mx(t))2存在,则称他为随机过程的方差函数,记为
    D X ( t ) D_X(t) DX(t),即 D X ( t ) = E ( X ( t ) − m x ( t ) ) 2 D_X(t)=E(X(t)-m_x(t))^2 DX(t)=E(X(t)mx(t))2

  • 对于任意给定的 t 1 , t 2 ∈ T t_1,t_2\in T t1,t2T, E [ X ( t 1 ) X ( t 2 ) ] E[X(t_1)X(t_2)] E[X(t1)X(t2)]存在,则称他为随机过程的自相关函数,记为 R X ( t 1 , t 2 ) R_X(t_1,t_2) RX(t1,t2),即 R X ( t 1 , t 2 ) = E [ X ( t 1 ) X ( t 2 ) ] R_X(t_1,t_2)=E[X(t_1)X(t_2)] RX(t1,t2)=E[X(t1)X(t2)]

  • 对于任意给定的 t 1 , t 2 ∈ T t_1,t_2\in T t1,t2T, E [ ( X ( t 1 ) − m x ( t 1 ) ) ( X ( t 2 ) − m x ( t 2 ) ) ] E[(X(t_1)-m_x(t_1))(X(t_2)-m_x(t_2))] E[(X(t1)mx(t1))(X(t2)mx(t2))]存在,则称他为随机过程的自相关函数,记为 C X ( t 1 , t 2 ) C_X(t_1,t_2) CX(t1,t2),即 C X ( t 1 , t 2 ) = E [ ( X ( t 1 ) − m x ( t 1 ) ) ( X ( t 2 ) − m x ( t 2 ) ) ] C_X(t_1,t_2)=E[(X(t_1)-m_x(t_1))(X(t_2)-m_x(t_2))] CX(t1,t2)=E[(X(t1)mx(t1))(X(t2)mx(t2))]

随机过程的特征函数

设随机过程 { X ( t ) , t ∈ T } \{X(t), t\in T\} {X(t),tT},对每一个固定的 t ∈ T , X ( t ) t\in T,X(t) tT,X(t)为随机变量,依照随机变量的特征函数的定义, X ( t ) X(t) X(t)的特征函数为: φ X ( t , v ) = φ X ( t ) ( v ) = E [ e i v X ( t ) ] \varphi_X(t,v) = \varphi_{X(t)}(v)=E[e^{ivX(t)}] φX(t,v)=φX(t)(v)=E[eivX(t)]我们称该式子为随机过程 { X ( t ) , t ∈ T } \{X(t), t\in T\} {X(t),tT}的一维特征函数。若 X ( t ) X(t) X(t) 为连续随机变量,具有概率密度 f 1 ( x , t ) f_1(x,t) f1(x,t),则其一维特征函数为 φ X ( t ) ( v ) = ∫ − ∞ + ∞ e i v x f 1 ( x , t )   d x \varphi_{X(t)}(v)=\int_{-\infty}^{+\infty}e^{ivx}f_1(x,t)\,dx φX(t)(v)=+eivxf1(x,t)dx

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值