目录
一.随机变量及其分布函数
随机变量的定义:设随机实验的样本空间为U,如果对U中每一个元素e,有一个实数X(e)与之对应,这样就得到了一个定义在U上的实值值函数X=X(e),称之为随机变量
分布函数:为了研究随机变量的统计规律,并由于随机变量X的可能取值不一定能依次列出,但在一般情况下可以研究随机变量的取值落在某区间(x1,x2]中的概率,即求P{x1<X=<x2},但由于
P{x1<X=<x2} = P{X=<x2} - P{X=<x1}
由此研究P{x1<X<x2}就归结为研究形如P{X=<x}的概率问题,其中P{X<x}的概率值随着x的不同而变化,它是x的函数,称此函数为分布函数
设X是随机变量,x为任意实数,函数F(x)=P{X=<x}称为分布函数,对于任意x1,x2(x1<x2)都有:
P{x1<X=<x2} = P{X=<x2} - P{X=<x1}=F(x2) - F(x1)
分布式函数的性质:
1.F(X)为单调不减的函数 F(x2) - F(x1)=P{x1<X=<x2} >=0
2.0=<F(X)=<1
3.F(X+0)=F(X),即F(X)为右连续
二.离散型随机变量及其分布
离散型随机变量:如果随机变量的可能取值和个数为有限个或无线个,则称该随机变量为离散型随机变量
1.两点分布:若随机变量X可能值只有x1,x2两值,它的分布为
P{X=x1}=1-p, 0<p<1, P{X=x2}=P
则称X服从参数为p的两点分布
2.二项分布:若随机变量的分布为
P{X=k} = , k=0,1.....n
则称X服从参数为

最低0.47元/天 解锁文章
6927

被折叠的 条评论
为什么被折叠?



