开放集领域自适应OSDA(七):Learning Likelihood Estimates for Open Set Domain Adaptation论文原理

本文介绍了开放集领域自适应(OSDA)问题,特别是OpenDCAN方法,该方法旨在区分未知类别和已知类别。OpenDCAN使用对抗性学习和分布建模来区分目标域中的未知样本,并通过似然估计来检测未知类别。实验证明了OpenDCAN在处理开放集域适应问题上的有效性。
摘要由CSDN通过智能技术生成


前言

  • 文章来自2020年的ICME
  • 本文是本人开放集领域自适应OSDA系列论文的第7篇,所有系列论文的相关代码在https://github.com/CtrlZ1/Domain-Adaptation-Algorithms,希望各位大佬们不吝点赞,给个Star哦~

摘要

  • 大多数现有的领域适应框架都基于严格的假设,即不同的领域共享相同的标签空间,这对于实际应用来说过于理想化。在本文中,我们研究了一个现实的情况下,开放集域适应与部分共享类在两个域,并考虑负转移带来的未知类从目标域。因此,如何区分未知类别和已知类别起着关键作用。为了实现这一目标,我们提出了一种新的方法,称为开放分布控制适应网络
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值