文章目录
前言
- 文章来自2021年的TNNLS
- 本文是本人开放集领域自适应OSDA系列论文的第16篇,所有系列论文的相关代码在https://github.com/CtrlZ1/Domain-Adaptation-Algorithms,希望各位大佬们不吝点赞,给个Star哦~
摘要
- 流行的域适应方法适用于假定源域和目标域共享相同数据类别的近集场景。然而,在现实环境中,这一假设经常被违背,因为目标域通常包含源域中不存在的类别样本。这个设置被称为开放集域适应(OSDA)。大多数现有的领域适应方法在这种情况下都不能很好地工作。在本文中,我们提出了一种有效的OSDA方法,命名为联合对齐和类别分离(JACS)。具体而言,JACS学习了一个潜在的共享空间,在该空间中,已知类跨域特征分布的边缘和条件发散得到缓解(联合对齐),已知类和未知类之间的分布差异被放大,不同已知类之间的
本文提出了一种新的开放集域适应(OSDA)方法——联合对齐和类别分离(JACS),它能有效识别未知样本并保持已知类别的分类性能。JACS通过学习共享特征空间,减小已知类分布差异,同时最大化已知与未知类别的距离。实验表明,JACS在多个基准数据集上优于现有方法。
订阅专栏 解锁全文
954

被折叠的 条评论
为什么被折叠?



