AI换脸原理(2)——人脸检测参考文献S3FD: Single shot scale-invariant face detector

本文提出了一种名为S3FD的实时人脸检测器,旨在解决基于锚点的检测器在小尺度人脸检测中性能下降的问题。S3FD采用尺度公平框架,广泛分布的锚点层和锚匹配策略,以及最大背景标签技术,提高了小人脸的召回率和降低了误报率。在AFW、PASCAL人脸、FDDB和WIDER face数据集上,S3FD实现了最先进的检测性能,并能在Nvidia Titan X (PASCAL)上以36 FPS的速度运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

  • 本文提出了一种实时人脸检测器,称为单镜头尺度不变人脸检测器(S3FD),该检测器利用单个深度神经网络在各种尺度的人脸上都具有优越的性能,尤其是在小人脸上。具体来说,我们试图解决一个常见的问题,即基于锚的检测器随着对象变小而急剧恶化。我们在以下三个方面做出了贡献:1)提出了一个尺度公平的人脸检测框架,以很好地处理不同尺度的人脸。我们在广泛的层上平铺锚点,以确保所有比例的人脸都有足够的特征进行检测。此外,我们还基于有效接受野和提出的等比例区间原则设计锚定尺度;2)采用尺度补偿锚匹配策略提高小人脸的召回率;3)通过max-out背景标签降低小人脸的误报率。因此,我们的方法在所有常见的人脸检测基准测试(包括AFW、PASCAL人脸、FDDB和WIDER face数据集)上实现了最先进的检测性能,并且可以在Nvidia Titan X (PASCAL)上以36 FPS的速度运行vga分辨率图像。

一、介绍

  • 人脸检测是许多后续人脸相关应用的关键步骤,如人脸对齐[50,61]、人脸识别[32,40,62]、人脸验证[44,46]和人脸跟踪[17]等。在过去的几十年里,它得到了很好的发展。继Viola-Jones人脸检测器的开创性工作之后[48],早期的大部分工作都集中在设计鲁棒特征和训练有效分类器上。但是这些方法依赖于非鲁棒的手工特征,并且单独
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值