西瓜书南瓜书02

西瓜书南瓜书02

机器学习的三个步骤:

​ 定假设空间:初步选定可能的模型

​ 定优化方法:根据假设的特性选择合适的优化方法,通常是得出一个loss函数

​ 定算法:实现模型,实现loss函数,参数迭代优化。

线性回归模型优化的两个角度:

​ 1、均方误差最小化,求导获得最优点,得解

​ 2、假设模型误差符合正态分布,利用最大似然估计求得最符合的正态分布时的表达式,求导得出最优点。(缺点:假设分布可能不准确,当线性模型不足以表达数据时,误差就会出现系统性分布而非随机分布,此时虽然可以求得解,但会带来无法缩小的误差)

​ 3、由上述的缺点引出对数几率回归模型用于分类,非线性,无假设风险,输出可导,梯度可回传用于优化。用于回归任务时,任意阶可导,许多优化函数可以直接使用。

(其他的优化函数待扩充,以上两种方式的优劣和适用环境待扩充)

​ 其他模型同理,但要注意非凸优化,以及复杂函数可能存在的局部最优陷阱。大多数机器学习的函数无法求出导函数,只能靠迭代求得梯度下降方向,因此会陷入局部最优陷阱。

广义线性模型:


F ( y ) = w T x + b F(y)=w^Tx+b F(y)=wTx+b
增强了线性模型的表达能力

信息熵: 衡量一个分布的不确定性,均等分布最大,确定分布最小
I ( x ) = − l o g a P ( x ) I(x)=-log_aP(x) I(x)=logaP(x)
相对熵(KL散度):度量两个分布的差异。通常是给出一个理想分布p(x)和一个实际分布q(x),来刻画两个分布的差异
D K L ( p ∣ ∣ q ) = ∑ x p ( x ) ∗ log ⁡ b ( p ( x ) / q ( x ) ) = ∑ x p ( x ) log ⁡ b p ( x ) − ∑ x p ( x ) log ⁡ b q ( x ) D_{KL}(p||q) = \sum_xp(x)*\log_b(p(x)/q(x)) = \sum_xp(x)\log_bp(x) - \sum_xp(x)\log_bq(x) DKL(p∣∣q)=xp(x)logb(p(x)/q(x))=xp(x)logbp(x)xp(x)logbq(x)
求得的值越大,二者分布差异越大,这个也可以作为一个优化函数来使用

其中,后半部被称为交叉熵,由于p(x)理想,未知,但固定,所以求导只剩下后半部,因此最小化相对熵等价于最小化交叉熵

对数几率回归算法的机器学习三要素:

​ 模型:线性模型+对数衍生y,输出范围[0,1] ,近似阶跃的单调可微函数

​ 策略:极大似然估计,最小化交叉熵

​ 算法:梯度下降,牛顿法

LDA:投影降维,使得同类样本方差尽可能小,异类样本中心尽可能远。

​ 为了实现这一目标,同时将投影长度转化为矩阵内积便于运算
max ⁡ ∣ ∣ w T μ 0 − w T μ 1 ∣ ∣ 2 2 \max|| w^T\mu_0 - w^T\mu_1||^2_2 max∣∣wTμ0wTμ122

min ⁡ w T Σ 0 w \min w^T\Sigma_0 w minwTΣ0w

∣ ∣ a ∣ ∣ 2 2 二范数向量 a 的模长平方 ||a||_2^2 二范数 向量a的模长平方 ∣∣a22二范数向量a的模长平方

损失函数:
m a x J = ∣ ∣ w T μ 0 − w T μ 1 ∣ ∣ 2 2 / w T Σ 0 w + w T Σ 1 w = w T ( μ 0 − μ 1 ) ( μ 0 − μ 1 ) T w / w T ( Σ 0 + Σ 1 ) w max J = ||w^T\mu_0-w^T\mu_1||^2_2 / w^T \Sigma_0 w + w^T \Sigma_1 w = w^T(\mu_0-\mu_1)(\mu_0-\mu_1)^Tw/w^T(\Sigma_0+\Sigma_1)w maxJ=∣∣wTμ0wTμ122/wTΣ0w+wTΣ1w=wT(μ0μ1)(μ0μ1)Tw/wT(Σ0+Σ1)w

= > m a x J = w T S b w / w T S w w = > m i n : − w T S b w    s . t . : w T S w w = 1 => max J=w^TS_bw/w^TS_ww =>min :-w^TS_bw \space \space s.t.:w^TS_ww=1 =>maxJ=wTSbw/wTSww=>min:wTSbw  s.t.:wTSww=1

(w的模长不影响最后的结果,通过固定w模长,约束分母为1,进而使得分子可解)[变量约束为常数真的不会影响后续求解嘛?]

拉格朗日乘子法解等式约束优化问题

约束式变形加入优化式中
L ( x , λ ) = f ( x ) + ∑ i = 1 n λ i h i ( x ) L(x,\lambda) = f(x)+\sum_{i=1}^n \lambda_ih_i(x) L(x,λ)=f(x)+i=1nλihi(x)
令x偏导数为0,求出可能的极值点,再一一验证。

广义特征值:设AB为n阶方阵,若存在数λ使得Ax=λBx存在非0解,则称λ是一个A相对于B的广义特征值,x是A相对于B的,属于lambda的特征向量。当B=E(单位阵)时,广义特征值退化为标准特征值。

广义瑞利商:A B为n阶厄米矩阵,B正定,(实数层面,厄米矩阵等价于转置矩阵)
R ( x ) = x H A x / x H B x ( x ! = 0 ) R(x) = x^HAx/x^HBx(x!=0) R(x)=xHAx/xHBx(x!=0)
R(x)为A相对于B的广义瑞利商。B=E时,广义瑞利商退化为瑞利商。

(不大理解,存疑,稍后补)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值