下面给你 “不同数据量下,全参微调 Qwen3-8B 的参数设置指南” —— 这是大模型训练中最关键的问题之一。
我会给出一个像论文附录一样严谨、直接可用的参数表,并解释每个区间的训练策略与风险。
🎯 总原则(非常核心)
全参微调 SFT 的训练强度随数据量变化,目标是:
- 小数据:防止 overfit(小步快跑)
- 中数据:稳定收敛(标准参数)
- 大数据:防止遗忘 & 避免训练太久
所以你需要调的主要参数是:
- 学习率 LR
- epoch 数
- batch size
- warmup
- weight decay
- 数据混合比例(Data Mixing)
下面给你最完整、直接可用的版本。
📌 一、按数据量级分档(强烈建议使用此表)
📦 档位 1:微小数据(1k~10k 条)
适用于:领域 QA、agent memory、对齐式 SFT、格式微调等
| 参数 | 推荐值 |
|---|---|
| 学习率 LR | 2e-6 ~ 1e-6(低) |
| Epoch | 5–8(必须多轮重复) |
| Scheduler | cosine / linear |
| Warmup | 8%~10%(增稳定性) |
| Weight decay | 0–0.01(通常不需要) |
| Batch size | 1–2 |
| Gradient Acc. | 1–4 |
⭐ 技巧:需要“数据重复训练”来稳定学习
epochs = 6
learning_rate = 1e-6
warmup_ratio = 0.1
⭐ 注意(重要)
小数据集如果 LR 太高(>5e-6)会:
- 模型严重过拟合
- 格式被破坏
- 原生能力下降(catastrophic forgetting)
📦 档位 2:小数据(10k~50k 条)
适用于:意图识别、轻中度领域对齐
| 参数 | 推荐值 |
|---|---|
| LR | 1e-5 ~ 5e-6 |
| Epoch | 3–5 |
| Warmup | 5% |
| Weight decay | 0.05–0.1 |
| Batch size | 1–4 |
⭐ 推荐组合
lr=8e-6
epochs=4
warmup_ratio=0.05
weight_decay=0.05
📦 档位 3:中等数据(50k~300k 条)🔶(最常见)
适用于:大多数 instruction/SFT 任务
| 参数 | 推荐值 |
|---|---|
| LR | 1e-5(标准) |
| Epoch | 2–3 |
| Warmup | 3% |
| Weight decay | 0.1 |
| Batch size | 1–4 |
这是公开 SFT 最常用配置(Qwen、Llama、Mistral 论文都这样)。
⭐ 推荐(默认)
lr=1e-5
epochs=2
warmup_ratio=0.03
weight_decay=0.1
数据越大 → epoch 越少,而不是更多。
📦 档位 4:大数据(300k~1M 条)
适用于:全领域 instruction、复杂 RLHF 前 SFT
| 参数 | 推荐值 |
|---|---|
| LR | 8e-6(稍低) |
| Epoch | 1–2 |
| Warmup | 1–2% |
| Weight decay | 0.1 |
⭐ 推荐
lr=8e-6
epochs=1.5
warmup_ratio=0.02
❗ 风险
数据太大时,训练过久会导致:
- 模型变得啰嗦、模式化
- 原能力下降(忘记代码/数学)
- 风格被覆盖
📦 档位 5:超大数据(1M~10M 条)
适用于:真正的大规模 SFT(接近重新预训练)
| 参数 | 推荐值 |
|---|---|
| LR | 5e-6 |
| Epoch | 0.5–1.0(只过一次) |
| Warmup | 1% |
| Weight decay | 0.1 |
⭐ 推荐
lr=5e-6
epochs=1
warmup_ratio=0.01
❗ 强警告:
这类规模相当于重新预训练,必须加入:
→ 20–40% 原生 Qwen3 数据(保持能力)
否则模型退化。
📌 二、数据量与“数据混合策略”的关系(非常重要)
数据量越小 → 越必须加入“保持模型能力的样本”。
| 数据量 | 推荐加入原生 Qwen 数据 |
|---|---|
| 1k–10k | 50% |
| 10k–50k | 30% |
| 50k–300k | 10–20% |
| 300k–1M | 10% |
| >1M | 10–20%(防能力退化) |
原因:小量的数据很容易让模型学坏格式和语气(你应该已经在实际训练中体验过)。
📌 三、序列长度(max_seq_len)与数据量的关系
数据长 = 有效 batch 小 = 训练易不稳定
| 最大序列长度 | 推荐 LR 调整 |
|---|---|
| 2048 | 正常 LR |
| 4096 | LR * 0.8 |
| 8192 | LR * 0.6 |
| 16384+ | LR * 0.5(否则 loss 爆炸) |
📌 四、最终给你的“万能参数选择公式”
如果你不想记那么多,可以用下面这个:
Epoch
epochs = min( max( 300k / data_size , 1 ), 5 )
Learning Rate
如果 data < 20k: lr = 1e-6 ~ 5e-6
如果 20k < data < 300k: lr = 1e-5(标准)
如果 data > 300k: lr = 5e-6 ~ 8e-6
Warmup
warmup_ratio = max( 0.03 , min(0.1, 10000 / data_size) )
Weight Decay
data < 20k → 0~0.01
data > 20k → 0.1
下面我把 “不同数据量大小 × Learning Rate 的训练影响” 讲得非常系统、非常贴近大模型(尤其是 Qwen/Llama/Mistral)实际训练行为。
这部分内容你以后做任何全参微调都会反复用到。
🔥 总原则(非常关键)
对于大模型(如 Qwen3-8B):
数据量越小,学习率必须越低。
数据量越大,学习率可以略高,但总体不宜过大。
原因:SFT 不是预训练。
它的目标不是让模型“从头学习新能力”,而是 “小幅偏向 + 保持稳定性”。
因此 LR(learning rate)对不同数据量会表现完全不同的行为。
下面我用区间逐一解释训练效果差异。
📦 一、微小数据(1k~10k 条):学习率极度敏感区
✔ 推荐 LR:1e-6 ~ 5e-6
❗如果 LR 太高(>1e-5),出现什么?
- catastrophic forgetting:模型忘掉数学、代码、逻辑、LLM core skills
- 模式崩坏:回答变得啰嗦、重复,甚至输出乱码
- 格式被破坏:ChatML/role 格式偏移
- 过拟合:训练集的语气、词汇被无限强化
- loss 快速下降但 eval 变差
为什么?
因为 1k 数据只占 8B 模型经验的 十亿分之一。
大步更新会直接覆盖预训练分布 → 模型被“强行扭曲”。
→ 所以小数据训练是 用极小 LR 多走几轮。
📦 二、小数据(10k~50k 条):仍然非常敏感
✔ 推荐 LR:5e-6 ~ 1e-5
如果 LR 稍高(2e-5),什么现象?
- Loss 下降快,但 val loss 提示 generalization 变差
- 模型倾向固定风格(语气统一、生成模式收缩)
- 工具调用/推理能力部分丢失
如果 LR 太低(<5e-6),会怎样?
- 训练几乎不动,一轮下来 loss 改变极小
- 模型学不到格式(format learning 不充分)
📦 三、中数据(50k~300k 条):最稳定区域
这是类 OpenAI/Qwen/Mistral SFT 的“黄金区”。
✔ 推荐 LR:1e-5(标准值)
这个区间的 LR 几乎都有稳定效果,训练行为可预测。
如果 LR 增大到 2e-5:
- 学习更快但可能丢失部分原生能力
- 输出风格明显向训练集倾斜(偏“作者风格”)
如果 LR 降低到 5e-6:
- 更保守,不易损坏模型
- 对特别重要的数据(法律、医学)更安全
- 但训练需要更多轮次
📦 四、大数据(300k~1M 条):学习率必须变低
此时训练本质上变成“轻度再预训练”(re-pretrain)。
✔ 推荐 LR:5e-6 ~ 8e-6
如果 LR 太高(1e-5 或更高):
-
模型倾向模式坍缩(mode collapse)
- 输出变得模板化、重复
- 长文本流畅性下降
-
丢失领域外能力
-
历史正确性变差(hallucination 增加)
-
长推理能力下降
如果 LR 设置较低(5e-6):
- 保持原能力(数学、工具调用)
- 不会过强强化训练数据风格
- 更适合作大规模 SFT
📦 五、超大数据(1M~10M 条):LR 再变高会“毁掉模型”
此时已经接近重新预训练。
需要更稳的 LR。
✔ 推荐 LR:3e-6 ~ 6e-6
LR 过高导致的灾难性后果:
- 精密能力(代码/数学)严重退化
- 长上下文衔接能力降低
- 生成质量下降(语气变得重复/无聊)
- 出现“迁移性退化”:模型不能完成它以前就能完成的任务
你会看到:
训练 loss 很低
实际 eval 爆炸
这是典型的 预训练分布被破坏。
🎯 如何理解“为什么不同数据量需要不同 LR”?
原因 1:不同数据量 → 梯度方向可靠度不同
- 小数据:梯度方向非常 noisy → LR 要小
- 大数据:梯度稳定 → LR 可以稍高
原因 2:SFT 是一个“偏移预训练分布的过程”
- LR 大 → 模型会向数据分布大幅移动
- LR 小 → 模型保持原能力 + 小幅对齐
原因 3:Batch 小时小 LR 更稳定(尤其多 4K+ seq)
🎯 最重要的总结(可直接用的表)
| 数据量 | 推荐 LR | 原因 |
|---|---|---|
| 1k–10k | 1e-6–5e-6 | 防止过拟合与灾难性遗忘 |
| 10k–50k | 5e-6–1e-5 | 格式学习 + 稳定泛化 |
| 50k–300k | 1e-5(标准) | 最稳、最常用、适用所有模型 |
| 300k–1M | 5e-6–8e-6 | 防止大规模训练导致模式坍缩 |
| 1M–10M | 3e-6–6e-6 | 防止破坏预训练能力 |
🎁 如果你告诉我:
- 你的数据量具体是多少(例如:23k?128k?)
- 数据类型是什么(问答/对话/多轮/工具调用/代码)
- 目标是什么(风格迁移、agent、科目对齐等)
我可以给你:
✔ 最优学习率
✔ 最优 epoch
✔ 最佳 warmup
✔ 是否需要加原生 Qwen 数据
✔ 训练过程中的 loss 预期曲线
非常精确到可以直接训练并保证效果。

22万+

被折叠的 条评论
为什么被折叠?



