2019-2020南邮《信息安全数学基础》期末考试回忆

复习时发现网络上相关资料真的是太少了…复习起来真的太费劲了…所以想至少写一点造福后人吧…

填空

顺序乱了

  1. φ ( 840 ) \varphi(840) φ(840)
  2. 7 7 7 7^{7^7} 777的个位
  3. ( 118 229 ) (\frac{118}{229}) (229118)
  4. 一次同余式的求解 17 x ≡ 36 m o d     19 17x\equiv36\mod\,19 17x36mod19
  5. 模29的所有原根
  6. 模9的完全剩余系,要求全是偶数
  7. < Z 11 ∗ , ⋅ > <Z^*_{11},\cdot> <Z11,>的5阶子群生成元
  8. Z 15 [ x ] Z_{15}[x] Z15[x]不是整环的原因
  9. 拉格朗日定理的应用 判断:阶为80的群有一个阶为30的子群
  10. 单同态条件

计算题

  1. 欧几里得除法+贝祖等式 (210,-330) (好像)
  2. x 2 ≡ 2 ( m o d   p ) x^2\equiv2(mod\ p) x22(mod p)无解
    x 2 ≡ 3 ( m o d   p ) x^2\equiv3(mod\ p) x23(mod p)有解
    p p p
  3. 模重复平方
  4. F 3 [ x ] F_3[x] F3[x]的不可约多项式   F 27 \ F_{27}  F27 27阶有限域
  5. 中国剩余定理,m不是互素的,而且x有系数,要先将方程组转换成中国剩余定理的形式

证明

  1. 8 ∣ ( n 2 − 1 ) 8|(n^2-1) 8(n21)
  2. 证明中心化是正规子群
  3. 整环的素理想是极大理想
  4. 证明 x 4 + x + 1 x^4+x+1 x4+x+1是本原多项式( F 2 [ x ] F_2[x] F2[x])
  5. ( a p ) = ( a q ) , p = q + 4 a (\frac{a}{p})=(\frac{a}{q}),p=q+4a (pa)=(qa),p=q+4a
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值