复习时发现网络上相关资料真的是太少了…复习起来真的太费劲了…所以想至少写一点造福后人吧…
填空
顺序乱了
- φ ( 840 ) \varphi(840) φ(840)
- 7 7 7 7^{7^7} 777的个位
- ( 118 229 ) (\frac{118}{229}) (229118)
- 一次同余式的求解 17 x ≡ 36 m o d 19 17x\equiv36\mod\,19 17x≡36mod19
- 模29的所有原根
- 模9的完全剩余系,要求全是偶数
- < Z 11 ∗ , ⋅ > <Z^*_{11},\cdot> <Z11∗,⋅>的5阶子群生成元
- Z 15 [ x ] Z_{15}[x] Z15[x]不是整环的原因
- 拉格朗日定理的应用 判断:阶为80的群有一个阶为30的子群
- 单同态条件
计算题
- 欧几里得除法+贝祖等式 (210,-330) (好像)
-
x
2
≡
2
(
m
o
d
p
)
x^2\equiv2(mod\ p)
x2≡2(mod p)无解
x 2 ≡ 3 ( m o d p ) x^2\equiv3(mod\ p) x2≡3(mod p)有解
求 p p p - 模重复平方
- F 3 [ x ] F_3[x] F3[x]的不可约多项式 F 27 \ F_{27} F27 27阶有限域
- 中国剩余定理,m不是互素的,而且x有系数,要先将方程组转换成中国剩余定理的形式
证明
- 8 ∣ ( n 2 − 1 ) 8|(n^2-1) 8∣(n2−1)
- 证明中心化是正规子群
- 整环的素理想是极大理想
- 证明 x 4 + x + 1 x^4+x+1 x4+x+1是本原多项式( F 2 [ x ] F_2[x] F2[x])
- ( a p ) = ( a q ) , p = q + 4 a (\frac{a}{p})=(\frac{a}{q}),p=q+4a (pa)=(qa),p=q+4a