信息安全数学基础-期中复习提纲

期中复习-提纲

好久没有写博文了,10月份之后骤然忙了起来,而且第七节课之后的信安数基公式太复杂,电脑编辑公式实在不方便,所以转而写纸质的笔记了。
这次是期中复习提纲,内容主要在前七章。后续8至14次课的内容依旧是用纸质笔记记录。

1 带余除法

1 整除的定义与性质

为了简便,当我们提到整数的因子时,总假定是正的。

2 带余除法
注意:
  • 带余除法得到的q(不完全商)和r(余数) 存在且唯一
  • r 的范围,别忘了写!
重要例子

若a , b 是任意两个不完全为0的整数, a x 0 + b y 0 ax_0+by_0 ax0+by0是所有形如 a x + b y ax+by ax+by的整数中最小的整数,则
a x 0 + b y 0 ∣ a x + b y ax_0+by_0|ax+by ax0+by0ax+by
其中x , y 是任意整数

3 整数的数字符号表示
4 最大公因子
  • 定义0与0的最大公因子为0
  • 辗转相除法求最大公因子时,约定 b = r 1 b =r_1 b=r1
  • 辗转相除法求最大公因子时,带余除法次数 t t t不超过 2 l o g 2 ( b ) + 2 2log_2(b)+2 2log2(b)+2
    • 也可通过数b的二进制长度的缩减角度想
最大公因子的线性表示(可以由矩阵表示或另一种方法推导)

定理:对任意两个正整数a , b ,存在整数x 和 y,使 ( a , b ) = x a + y b (a , b)= xa+yb (a,b)=xa+yb

2. 扩展欧式算法

1 扩展的欧几里得算法

每次带余除法的余数都可以写成线性组合的形式

  • 矩阵的初等变换视角
  • 递推关系观察
线性系数的解

a a a b b b为正整数,则方程
a u + b v = ( a , b ) au+bv = (a,b) au+bv=(a,b)
总有整数解 u , v u,v u,v。若 ( u 0 , v 0 ) (u_0,v_0) (u0,v0)是一个解,一般解的形式为
u = u 0 + b k ( a , b ) v = v 0 − a k ( a , b ) u= u_0+\frac{bk}{(a,b)} \\v = v_0-\frac{ak}{(a,b)} u=u0+(a,b)bkv=v0(a,b)ak

2 应用:二元一次方程有解判定
例子

若a , b 是任意两个不完全为0的整数, a x 0 + b y 0 ax_0+by_0 ax0+by0是所有形如 a x + b y ax+by ax+by的整数中最小的整数,则
a x 0 + b y 0 ∣ a x + b y ax_0+by_0|ax+by ax0+by0ax+by
其中x , y 是任意整数

定理

a , b a,b a,b是不全为0的整数,则方程
a x + b y = c ax+by=c ax+by=c
有整数解当且仅当 ( a , b ) ∣ c (a,b)|c (a,b)c

3 多项式的带余除法
  • 最大公因式定义时,要求 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)不全为零多项式
  • ( f ( x ) , g ( x ) ) (f(x),g(x)) (f(x),g(x)):代表首一最大公因式

3 算术基本定理

1 素数及其判定
  • 1不是素数
判定素数的方法

对所有素数 p ≤ a p\leq \sqrt{a} pa ,p不整除a,那么a是素数

埃拉托色尼素数筛选法

很快速计算出1到n之间的所有素数:去掉2到 n \sqrt{n} n 中所有素数的倍数

素数的个数

素数有无穷多个(证明:反证法)

素数定理

函数 π ( n ) \pi(n) π(n)表示不超过n的素数个数,其中n是正整数

定理:
lim ⁡ x → + ∞ π ( n ) n / l n ( n ) = 1 \lim_{x\to+\infty}\frac{\pi(n)}{n/ln(n)}=1 x+limn/ln(n)π(n)=1

2 梅森素数和费马素数
梅森素数
  • 一个引理!

n n n是素数时,整数 M n = 2 n − 1 M_n=2^n-1 Mn=2n1称为第 n n n M e r s e n n e Mersenne Mersenne

M n M_n Mn是素数时, M n M_n Mn称为 M e r s e n n e Mersenne Mersenne素数

  • 梅森数有的是素数,有的是合数
费马素数
  • 定理:若 2 m + 1 2^m+1 2m+1为素数,则m一定是2的方幂(即, m = 2 n m=2^n m=2n
  • 逆定理不成立

n n n为非负整数,则称 F n = 2 n + 1 F_n=2^n+1 Fn=2n+1 F e r m a t Fermat Fermat

F n F_n Fn是素数,则称 F n F_n Fn F e r m a t Fermat Fermat素数

3 算术基本定理
  • o r d p ( n ) ord_p(n) ordp(n)函数

    • n的标准分解式中素数p的幂次可以定义为 o r d p ( n ) ord_p(n) ordp(n).

    • n = Π p 为 素 数 p o r d p ( n ) n = \Pi_{p为素数}p^{ord_p(n)} n=Πppordp(n)

  • 360 = 2 3 ⋅ 3 2 ⋅ 5 2^3·3^2·5 23325

    • 360所有正因子个数: ( 3 + 1 ) ( 2 + 1 ) ( 1 + 1 ) = 4 ⋅ 3 ⋅ 2 = 24 (3+1)(2+1)(1+1)=4·3·2=24 (3+1)(2+1)(1+1)=432=24
4 因式分解定理
  • 多项式能否再分解与所规定的系数范围有关
  • 定义(不)可约多项式时,是在次数 ≥1的基础上的
因式分解定理

多项式 f ( x ) ∈ F [ x ] f(x)∈F[x] f(x)F[x]含有因式 x − a ( a ∈ F ) x-a(a∈F) xa(aF)当且仅当 f ( a ) = 0 f(a)=0 f(a)=0

不可约多项式的判定问题

(Eisenstein判别法)

f ( x ) = a 0 + a 1 x + . . . + a n x n ∈ Z [ x ] f(x)=a_0+a_1x+...+a_nx^n∈Z[x] f(x)=a0+a1x+...+anxnZ[x],p是一个素数。若

  1. p不整除 a n a_n an
  2. p ∣ a i , 0 ≤ i ≤ n − 1 p|a_i,0\leq i\leq n-1 pai,0in1
  3. p 2 不 整 除 c 0 p^2不整除c_0 p2c0

f ( x ) f(x) f(x) Z [ x ] Z[x] Z[x]上不可约(从而在 Q [ x ] Q[x] Q[x]上也不可约)

4 模运算与同余

1 模运算及应用
模运算的重要性质

对正整数n和整数a, a − 1   m o d   n a^{-1}\ mod\ n a1 mod n存在的充分必要条件为 ( a , n ) = 1 (a,n)=1 (a,n)=1

  • 若a模n的逆存在,则称a为一个单位(unit)

  • 一个例题:计算 7 / 8   m o d   11 7/8 \ mod\ 11 7/8 mod 11
    7 ⋅ 8 − 1 ≡ 7 ⋅ 7 ≡ 49 ≡ 5   m o d   11 7·8^{-1}≡ 7· 7≡49≡5\ mod\ 11 78177495 mod 11

  • 乘数密码:仅当 ( k , q ) = 1 (k,q)=1 (k,q)=1时,即k与q互素时,明文字母和密文字母才是一一对应的。

2 同余及其应用

a ≡ b   ( m o d   n )    ⟺    n ∣ ( a − b ) a≡b\ (mod\ n)\iff n|(a-b) ab (mod n)n(ab)

同余的性质

先注意两处:

  • 若 a d ≡ b d   m o d   n , 且 ( d , n ) = 1 , 则 a ≡ b   m o d   n 若ad≡bd\ mod\ n,且(d,n)=1,则a≡b\ mod\ n adbd mod n,(d,n)=1,ab mod n
    • (可考虑d在模n下存在逆元的角度)
    • 注意消去律成立有条件
  • 若 a ≡ b   m o d   n ,   d 是 a , b , n 的 任 一 公 因 子 , 则 a d ≡ b d   m o d   n d 若a≡b\ mod\ n,\ d是a,b,n的任一公因子,则\frac{a}{d}≡\frac{b}{d}\ mod\ \frac{n}{d} ab mod n, da,b,ndadb mod dn
    • 这里模数n千万不要忘记除以d!!!
  • 一个整数能被3或9整除的必要且充分条件是它的十进制表示的各位数之和能被3或9整除
    • 证明用到 10 ≡ 1   m o d   3 10≡1\ mod\ 3 101 mod 3 10 ≡ 1   m o d   9 10≡1\ mod\ 9 101 mod 9
3 等价关系和剩余类
等价关系的定义

自反律、对称律、传递律

同余是一个等价关系

4 完全剩余系
完全剩余系的判定定理

设m是整数,S是一个整数集,则S是模m的一个完全剩余系的充分必要条件是:

  1. S包含m个元素
  2. S中任意两个元素模m不同余
完全剩余系的性质

定理:(一元的那个)

定理:若 m 1 m_1 m1 m 2 m_2 m2是两个互素的正整数,若x遍历 m 1 m_1 m1的一个完全剩余系,若y遍历 m 2 m_2 m2的一个完全剩余系,则 m 1 x + m 2 y m_1x+m_2y m1x+m2y遍历模 m 1 m 2 m_1m_2 m1m2的一个完全剩余系。

  • 注意定理成立的条件:
    • m 1 , m 2 m_1,m_2 m1,m2要是互素的
    • m 1 m_1 m1 x x x乘在一起, m 2 m_2 m2 y y y乘在一起

5 欧拉函数计算

欧拉函数的定义

ϕ ( m ) \phi(m) ϕ(m)是0,1,2,…,m - 1中与 m 互素的数的个数

欧拉函数的简单计算
事实

当p为素数时, ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1 ϕ ( p n ) = p n − p n − 1 \phi(p^n)=p^n-p^{n-1} ϕ(pn)=pnpn1

  • (与 p n p^n pn互素的一定不含有因子p + [ 0 , p n − 1 ] [0,p^n-1] [0,pn1] p p p的倍数有 p n − 1 p^n-1 pn1个)
既约剩余系
既约剩余系的性质

定理:(一元的那个)

定理:若 m 1 m_1 m1 m 2 m_2 m2是两个互素的正整数,若x遍历 m 1 m_1 m1的一个既约剩余系,若y遍历 m 2 m_2 m2的一个既约剩余系,则 m 1 x + m 2 y m_1x+m_2y m1x+m2y遍历模 m 1 m 2 m_1m_2 m1m2的一个既约剩余系。

推论

g c d ( m 1 , m 2 ) = 1 gcd(m_1,m_2)=1 gcd(m1,m2)=1,则 ϕ ( m 1 m 2 ) = ϕ ( m 1 ) ϕ ( m 2 ) \phi(m_1m_2)=\phi(m_1)\phi(m_2) ϕ(m1m2)=ϕ(m1)ϕ(m2)

欧拉函数的计算

m = p 1 l i p 2 l 2 . . . p s l s m=p_1^{l_i}p_2^{l_2}...p_s^{l_s} m=p1lip2l2...psls,其中 p i , i = 1 , . . . , s p_i,i = 1,...,s pi,i=1,...,s各不相同,则
ϕ ( m ) = m Π i = 1 s ( 1 − 1 p i ) \phi(m)=m\Pi_{i=1}^{s}(1-\frac{1}{p_i}) ϕ(m)=mΠi=1s(1pi1)

6 欧拉定理 快速模幂

欧拉定理和费马小定理
欧拉定理

( k , m ) = 1 (k,m)=1 (k,m)=1,则 k ϕ ( m ) ≡ 1   ( m o d   m ) k^{\phi(m)}≡1\ (mod\ m) kϕ(m)1 (mod m)

  • 注意应用条件:互素!
Corollary(Fermat小定理)

若p为素数,则对所有的整数a,有 a p ≡ a   ( m o d   p ) a^p≡a\ (mod\ p) apa (mod p)

  • 注意应用条件:p是素数!对所有整数a!

费马小定理虽然可以看作是欧拉定理的推论,但由费马小定理也可以推出欧拉定理(证明想中国剩余定理)

Wilson定理
定理

设p是一个素数,则
( p − 1 ) ! ≡ − 1   ( m o d   p ) (p-1)!≡-1\ (mod\ p) (p1)!1 (mod p)

  • 注意定理应用的条件:p是素数
Wilson定理的逆定理成立

因此Wilson定理可用来判定一个合数不是素数

欧拉定理的应用:

可以用来求逆元
a − 1 ≡ a ϕ ( n ) − 1   ( m o d   n ) a^{-1}≡a^{\phi(n)-1}\ (mod\ n) a1aϕ(n)1 (mod n)

快速模幂算法
  1. 计算n的二进制表示
  2. 计算 b 2 i   ( m o d   m ) , 0 ≤ i ≤ r b^{2^i}\ (mod\ m),0\leq i \leq r b2i (mod m),0ir
  3. 计算 b n b^n bn
平方乘算法(两种)

一般采用高位到低位(略好)

其它进制表示法:预计算+从低位到高位

欧拉定理的应用:循环小数的秘密

定理:有理数 a b , 0 < a < b , ( a , b ) = 1 \frac{a}{b},0<a<b,(a,b)=1 ba,0<a<b,(a,b)=1能表示成纯循环小数的充分必要条件是 ( b , 10 ) = 1 (b,10)=1 (b,10)=1

7 线性同余方程

1 一次同余方程的求解
2 两个一次同余方程组的求解
3 中国剩余定理
  • 要求:模数互素!!!!!(不一定模素数,只要互素就行了)
  • 证明思路:先构造出一个符合要求的解,再证明解的唯一性。
  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值