wxe量子力学笔记

`第一章

量子力学2

1 2 m e V e 2 = h v − W 0 \frac{1}{2}m_eV_e^2=hv-W_0 21meVe2=hvW0

  1. Planck-Einstein关系式:
    • E = h v E=hv E=hv
    • p = h / λ p=h/\lambda p=h/λ
    • λ ( μ m ) = 1.24 E ( e V ) \lambda (\mu m)=1.24 E(eV) λ(μm)=1.24E(eV)
  2. Compton 效应
    • ℏ \hbar
    • Δ λ = λ ‘ − λ = 4 π ℏ m e s i n 2 θ 2 = 2 λ c s i n 2 θ 2 \Delta \lambda=\lambda ^`-\lambda=\frac{4 \pi \hbar }{m_e}sin^2\frac {\theta}{2}=2\lambda_c sin^2\frac {\theta}{2} Δλ=λλ=me4πsin22θ=2λcsin22θ
    • λ c = 2.4 × 1 0 − 10 c m ( 电 子 C o m p t o n 波 长 ) \lambda_c =2.4\times 10^{-10}cm(电子Compton波长) λc=2.4×1010cm(Compton)
    • λ c = 2 π ℏ m e c \lambda_c =\frac{2\pi \hbar}{m_ec} λc=mec2π
    • m e c 2 = ℏ w m_ec^2=\hbar w mec2=w
  3. Bohr假设
    • 对应原理
    • 量子化条件 ∮ p k d q k = n k h \oint p_k{\rm d}q_k=n_kh pkdqk=nkh
      • p k p_k pk为广义动量, q k q_k qk为广义坐标
  4. deBroglie粒子的波粒二象性
    • de Broglie 关系
      • E = h v = ℏ w E=hv=\hbar w E=hv=w
      • p = h / λ = ℏ k p=h/\lambda=\hbar k p=h/λ=k
      • λ e ( n m ) = 3.89 10 E ( e V ) = 1.23 E ( e V ) \lambda_e(nm)=\frac{3.89}{\sqrt{10E(eV)}}=\frac{1.23}{\sqrt{E(eV)}} λe(nm)=10E(eV) 3.89=E(eV) 1.23
    • de Broglie 波
      • Ψ = A e x p [ i ( k ⃗ ⋅ r ⃗ ) ] A e x p i ℏ ( p ⃗ ⋅ r ⃗ − E t ) \Psi = \begin{aligned} A exp[i(\vec k \cdot \vec r)] \\ Aexp{\frac{i}{\hbar}(\vec{p} \cdot \vec{r}-Et)} \end{aligned} Ψ=Aexp[i(k r )]Aexpi(p r Et)
    • 驻波条件
      • 2 π = n λ n = 1 , 2 , 3 , . . . . 2\pi=n\lambda\quad n=1,2,3,.... 2π=nλn=1,2,3,....
      • p = h / λ = n ℏ / r p=h/\lambda=n\hbar/r p=h/λ=n/r
      • L = r p = n ℏ n = 1 , 2 , 3 , . . . . L=rp=n\hbar\quad n=1,2,3,.... L=rp=nn=1,2,3,....
    • 电子衍射实验
  5. 矩阵力学—对应原理
  6. 例题
    1. 基于Born角动量量子化假设推导氢原子核外电子轨道半径和能量
      • 解:圆周运动关系: m e w 2 r = m e V 2 / r = e 2 4 π ϵ 0 r 2 = e s 2 r 2 m_ew^2r=m_eV^2/r=\frac{e^2}{4\pi\epsilon_0r^2}=\frac{{e_s}^2}{r^2} mew2r=meV2/r=4πϵ0r2e2=r2es2
      • 量子化条件关系: ∫ 0 2 π L d ρ = n h = 2 π L , L = n ℏ = m e w r 2 ( n = 1 , 2 , . . . ) \int^{2\pi}_0L{\rm d}\rho=nh=2\pi L,L=n\hbar=m_ewr^2(n=1,2,...) 02πLdρ=nh=2πL,L=n=mewr2(n=1,2,...)
        确定半径有两个条件
      • r n = ℏ 2 n 2 m e e s 2 ( n = 1 , 2 , . . ) , E n = E k + V e = e s 2 2 r n − e s 2 r n = − e s 2 2 r n = − m e e s 4 2 ℏ 2 n 2 r_n=\frac{\hbar^2n^2}{m_ee_s^2}(n=1,2,..),E_n=E_k+V_e=\frac{e_s^2}{2r_n}-\frac{e_s^2}{r_n}=-\frac{e_s^2}{2r_n}=-\frac{m_ee_s^4}{2\hbar^2n^2} rn=mees22n2(n=1,2,..),En=Ek+Ve=2rnes2rnes2=2rnes2=22n2mees4
        能量等于动能加势能
      • 取n=1: r 1 = ℏ 2 m e e s 2 = α 0 = 0.53 A 玻尔半径 r_1=\frac{\hbar^2}{m_ee_s^2 }=\alpha_0=0.53A \quad\text{玻尔半径} r1=mees22=α0=0.53A玻尔半径
      • V 1 = w r 1 = ℏ m e r 1 = e s 2 ℏ , V 1 c = e s 2 ℏ = α = 1 / 137 精细结构常数 V_1=wr_1=\frac{\hbar}{m_er_1}=\frac{e_s^2}{\hbar},\frac{V_1}{c}=\frac{e_s^2}{\hbar}=\alpha=1/137\quad\text{精细结构常数} V1=wr1=mer1=es2,cV1=es2=α=1/137精细结构常数
      • E 1 = w r 1 = ℏ / m e r 1 = − m e e s 2 / ( 2 ℏ 2 ) = − 13.6 e V E_1=wr_1=\hbar/m_er_1=-m_ee_s^2/(2\hbar^2)=-13.6eV E1=wr1=/mer1=mees2/(22)=13.6eV
    2. 试用量子化条件求谐振子的能量
      • 解:设倔强系数为k,振幅为A,则
      • w = k / m , E = 0.5 m w 2 = 0.5 m V 2 + 0.5 m w 2 x 2 w=\sqrt{k/m},E=0.5mw^2=0.5mV^2+0.5mw^2x^2\quad w=k/m ,E=0.5mw2=0.5mV2+0.5mw2x2 E = 1 2 k A 2 E=\frac{1}{2}kA^2 E=21kA2
      • 任一位置处的动量大小为:
        • p = m w A 2 − x 2 = m w A 1 − ( x / A ) 2 p=mw\sqrt{A^2-x^2}=mwA\sqrt{1-(x/A)^2} p=mwA2x2 =mwA1(x/A)2
      • 量子化条件关系:
        • n h = ∮ p d q = 2 ∫ − A A p d x = m w A 2 π ( n = 0 , 1 , 2 , . . . . ) nh=\oint p{\rm d}q=2\int_{-A}^Ap{\rm d}x=mwA^2\pi(n=0,1,2,....) nh=pdq=2AApdx=mwA2π(n=0,1,2,....)
        • 精确的应该取n+1/2
      • A n 2 = ( 2 n + 1 ) ℏ / ( m w ) A_n^2=(2n+1)\hbar/(mw) An2=(2n+1)/(mw)
      • E n = ( n + 1 2 ) ℏ w E_n=(n+\frac{1}{2})\hbar w En=(n+21)w

第二章 波函数和Schrodinger方程

量子力学3

  1. 微观粒子的描述方法–经典方法
    • 位置矢量r(t)
  2. 微观粒子是波和粒子的统一体
    • 粒子性:静态自然属性–粒子可区分性
    • 波动性:运动自然属性
  3. 微观粒子的描述方法–量子力学的波函数
    • 表示: ψ ( r , t ) \psi(r,t) ψ(r,t)
  4. 波函数的统计解释
    • 是一种概率波, ψ ( r , t ) \psi(r,t) ψ(r,t)为概率波波幅
    • 在r处 d V = d x d y d z dV=dxdydz dV=dxdydz体元范围内发现粒子的概率与 ∣ ψ ( r , t ) ∣ 2 d V |\psi(r,t)|^2dV ψ(r,t)2dV成正比,设发现粒子的概念为 d W ( r , t ) dW(r,t) dW(r,t),则
    • d W ( r , t ) ∞ ∣ ψ ( r , t ) ∣ 2 d V ∞ ψ ∗ ( r , t ) d V dW(r,t)\infty|\psi(r,t)|^2dV\infty\psi^*(r,t)dV dW(r,t)ψ(r,t)2dVψ(r,t)dV
    • 概念密度w(r,t) w ( r , t ) = d W ( r , t ) d V ∞ ∣ ψ ( r , t ) ∣ 2 w(r,t)=\frac{dW(r,t)}{dV}\infty|\psi(r,t )|^2 w(r,t)=dVdW(r,t)ψ(r,t)2
    • 归一化波函数,满足 ∫ w ( r , t ) d V = 1 \int w(r,t)dV=1 w(r,t)dV=1
    • 在非束缚态,称为相对概率密度, ψ ( x , t ) = 1 2 π ℏ exp ⁡ ( i p x x ℏ ) \psi(x,t)=\frac{1}{\sqrt{2\pi\hbar}}\exp(\frac{ip_xx}{\hbar}) ψ(x,t)=2π 1exp(ipxx)
    • 数学上性质
      • 平方可积
      • 单值有限连续
  5. 态叠加原理
    • ψ ( r , t ) = c 1 ψ ( r , t ) + c 2 ψ ( r , t ) \psi(r,t)=c_1\psi(r,t)+c_2\psi(r,t) ψ(r,t)=c1ψ(r,t)+c2ψ(r,t)
    • ∣ c 1 ∣ 2 + ∣ c 2 ∣ 2 = 1 |c_1|^2+|c_2|^2=1 c12+c22=1
    • 可以推广到一般情况 ψ ( r , t ) = Σ n c n ψ n ( r , t ) , Σ ∣ c n ∣ 2 = 1 \psi(r,t)=\Sigma_nc_n\psi_n(r,t),\Sigma|c_n|^2=1 ψ(r,t)=Σncnψn(r,t),Σcn2=1
    • 对于连续态, ψ ( r , t ) = ∫ c ( s ) ψ ( r , t , s ) d s , ∫ ∣ c ( s ) ∣ 2 d s = 1 \psi(r,t)=\int c(s)\psi(r,t,s){\rm d}s,\int |c(s)|^2ds=1 ψ(r,t)=c(s)ψ(r,t,s)ds,c(s)2ds=1(s为本征值)
      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KOFh9CYY-1597641496441)(./量子力学作业/量子力学3.png)]

量子力学4

  1. 自由粒子的波函数,动量为p,能量为E
    ψ ( r , t ) = 1 / h 3 exp ⁡ [ i ( k ⋅ r − w t ) ] = 1 / h 3 exp ⁡ [ p ⋅ r − E t ) / ℏ ] \psi (r,t)=1/\sqrt{h^3}\exp[i(k\cdot r-wt)]=1/\sqrt{h^3}\exp[p\cdot r-Et)/\hbar] ψ(r,t)=1/h3 exp[i(krwt)]=1/h3 exp[prEt)/]

  2. 动量及其算符

    • 对x分量, − i ℏ ∂ x ψ ( r , t ) = p x ψ ( r , t ) -i\hbar \partial_x\psi(r,t)=p_x\psi(r,t) ixψ(r,t)=pxψ(r,t)
    • − i ℏ ∇ ψ ( r , t ) = p ψ ( r , t ) -i\hbar\nabla\psi(r,t)=p\psi(r,t)\qquad iψ(r,t)=pψ(r,t) (常矢量p)
    • 动量算符: p ^ = − i ℏ ∇ \qquad\hat{p}=-i\hbar\nabla p^=i
  3. 能量及其算符

    • 直接法 i ℏ ∂ t ψ ( r , t ) = E ψ ( r , t ) \qquad i\hbar\partial_t\psi(r,t)=E\psi(r,t) itψ(r,t)=Eψ(r,t)
    • 能量算符: H ^ = i ℏ ∂ t \qquad \hat{H}=i\hbar\partial_t H^=it ⇒ \Rightarrow 哈密顿算符
    • 与动量关系 E = p 2 2 m = p ⋅ p 2 m \qquad E=\frac{p^2}{2m}=\frac{p \cdot p}{2m} E=2mp2=2mpp
    • E ψ ( r , t ) = − ℏ 2 2 m ∇ 2 ψ ( r , t ) E\psi(r,t)=- \frac{\hbar^2}{2m}\nabla^2\psi(r,t) Eψ(r,t)=2m22ψ(r,t)
    • 自由粒子哈密顿算符: H ^ = − ℏ 2 2 m ∇ 2 \qquad \hat{H}=- \frac{\hbar^2}{2m}\nabla^2 H^=2m22
    • 势场U(r)中粒子哈密顿算符: H ^ = − ℏ 2 2 m ∇ 2 + U ( r ) \qquad \hat{H}=- \frac{\hbar^2}{2m}\nabla^2+U(r) H^=2m22+U(r)
    • 自由粒子方程
      • − ℏ 2 2 m ∇ 2 ψ ( r , t ) = i ℏ ∂ t ψ ( r , t ) -\frac{\hbar^2}{2m}\nabla^2\psi(r,t)=i\hbar\partial_t\psi(r,t) 2m22ψ(r,t)=itψ(r,t)
    • 势场中U(r,t)中单个粒子方程
      • [ − ℏ 2 2 m ∇ 2 + U ( r , t ) ] ψ ( r , t ) = i ℏ ∂ t ψ ( r , t ) [-\frac{\hbar^2}{2m}\nabla^2+U(r,t)]\psi(r,t) =i\hbar \partial_t\psi(r,t) [2m22+U(r,t)]ψ(r,t)=itψ(r,t)
    • 多粒子系
      • [ ∑ k = 1 N − ℏ 2 2 m k ∇ k 2 + U ( r 1 , ⋯   , r N , t ) ] ψ ( r , t ) = i ℏ ∂ t ψ ( r , t ) [\sum_{k=1}^N-\frac{\hbar^2}{2m_k}\nabla_k^2+U(r1,\cdots,r_N,t)]\psi(r,t)=i\hbar\partial_t\psi(r,t) [k=1N2mk2k2+U(r1,,rN,t)]ψ(r,t)=itψ(r,t)
  4. 例题

    1. 证明归一化的波函数随时间变化仍然归一化
    • 设束缚态波函数 ψ ( r , t ) \psi(r,t) ψ(r,t)已经归一化,即需证明
    • d d t ∫ ∣ ψ ( r , t ) ∣ 2 d V = 0 证明变化率为0 \frac{d}{dt}\int|\psi(r,t)|^2dV=0\qquad\text{证明变化率为0} dtdψ(r,t)2dV=0证明变化率为0
    • [ − ℏ 2 2 m ∇ 2 + U ( r , t ) ] ψ ( r , t ) = i ℏ ∂ t ψ ( r , t ) [-\frac{\hbar^2}{2m}\nabla^2+U(r,t)]\psi(r,t) =i\hbar \partial_t\psi(r,t) [2m22+U(r,t)]ψ(r,t)=itψ(r,t)
    • [ − ℏ 2 2 m ∇ 2 + U ( r , t ) ] ψ ∗ ( r , t ) = − i ℏ ∂ t ψ ∗ ( r , t ) [-\frac{\hbar^2}{2m}\nabla^2+U(r,t)]\psi^*(r,t) =-i\hbar \partial_t\psi^*(r,t) [2m22+U(r,t)]ψ(r,t)=itψ(r,t)
    • 上式 ∗ ψ ( r , t ) *\psi(r,t) ψ(r,t),下式 ∗ ψ ( r , t ) *\psi(r,t) ψ(r,t)可得:
      • i ℏ ∂ t ∣ ψ ( r , t ) ∣ 2 = − ℏ 2 2 m ∇ ⋅ [ ψ ∗ ( r , t ) ∇ ψ ( r , t ) − ψ ( r , t ) ∇ ψ ∗ ( r , t ) ] i\hbar\partial_t|\psi(r,t)|^2=-\frac{\hbar^2}{2m}\nabla\cdot[\psi^*(r,t)\nabla\psi(r,t)-\psi(r,t)\nabla\psi^*(r,t)] itψ(r,t)2=2m2[ψ(r,t)ψ(r,t)ψ(r,t)ψ(r,t)]!!!
    • 上式全空间积分,左边为要证明式子左边,右边为无穷远面积分
      • [ ψ ∗ ( r , t ) ∇ ψ ( r , t ) − ψ ( r , t ) ∇ ψ ∗ ( r , t ) ] r → ∞ = 0 [\psi^*(r,t)\nabla\psi(r,t)-\psi(r,t)\nabla\psi^*(r,t)]_{r\rightarrow\infty}=0 [ψ(r,t)ψ(r,t)ψ(r,t)ψ(r,t)]r=0

量子力学5

  1. 波函数展开的一般形式

    • ψ ( r , t ) = ∑ k c k ( t ) ρ k ( r ) \psi(r,t)=\sum_kc_k(t)\rho_k(r) ψ(r,t)=kck(t)ρk(r)

    • c k ( t ) = ∭ ρ k ∗ ( r ) ψ ( r , t ) = ( ρ k ( r ) , ψ ( r , t ) ) c_k(t)=\iiint\rho_k^*(r)\psi(r,t)=(\rho_k(r),\psi(r,t)) ck(t)=ρk(r)ψ(r,t)=(ρk(r),ψ(r,t)) 内积

    • ψ ( r , t ) = ∫ c ( s , t ) ρ ( s , r ) d s \psi(r,t)=\int c(s,t)\rho(s,r)ds ψ(r,t)=c(s,t)ρ(s,r)ds

    • c ( r , t ) = ( ρ ( s , r ) , ψ ( r , t ) ) c(r,t)=(\rho(s,r),\psi(r,t)) c(r,t)=(ρ(s,r),ψ(r,t))

  2. 动量波函数完备系

    • ρ ( r , t ) = 1 / h 3 exp ⁡ [ i ( p ⋅ r ) / ℏ ] \rho(r,t)=1/\sqrt{h^3}\exp[i(p\cdot r)/\hbar] ρ(r,t)=1/h3 exp[i(pr)/]
  3. 波函数的展开

    • ψ ( r , t ) = ∭ c ( p , t ) ρ ( p , r ) d p = ∭ c ( p , t ) 1 / h 3 exp ⁡ [ i ( p ⋅ r ) / ℏ ] d p \psi(r,t)=\iiint c(p,t)\rho(p,r)dp \\=\iiint c(p,t)1/\sqrt{h^3}\exp[i(p\cdot r)/\hbar]dp ψ(r,t)=c(p,t)ρ(p,r)dp=c(p,t)1/h3 exp[i(pr)/]dp

    • c ( p , t ) c(p,t) c(p,t)的意义

  4. 离散问题

    • 概率 P n P_n Pn,概率最大值,平均值: V ‾ = ∑ n P n V n \overline{V}=\sum_nP_nV_n V=nPnVn,

    • 平方期望值: V 2 = ∑ n P n V n 2 V^2=\sum_nP_nV_n^2 V2=nPnVn2

    • 方差: σ 2 = ∑ n P n ( V n − V ) 2 = V 2 ‾ − V ‾ 2 \sigma^2=\sum_nP_n(V_n-V)^2=\overline{V^2}-\overline{V}^2 σ2=nPn(VnV)2=V2V2

  5. 连续问题

    • 概念密度 ρ ( x ) \rho(x) ρ(x),概率最大值 x 0 ( ∂ x ρ ( x 0 ) = 0 ) x_0(\partial_x\rho(x_0)=0) x0(xρ(x0)=0)

    • 平均值: x ‾ = ∫ x ρ ( x ) d x \overline{x}=\int x\rho(x)dx x=xρ(x)dx,

    • 平方期望值: x 2 = ∫ x 2 ρ ( x ) d x x^2=\int x^2\rho(x)dx x2=x2ρ(x)dx

    • 方差: σ 2 = ∫ ( x − x ‾ ) 2 ρ ( x ) d x = x 2 ‾ − x ‾ 2 \sigma^2=\int(x-\overline x)^2\rho(x)dx=\overline{x^2}-\overline{x}^2 σ2=(xx)2ρ(x)dx=x2x2

  6. 设归一化波函数为 ψ ( r , t ) \psi(r,t) ψ(r,t)

    • 概率密度: w ( r , t ) = ∣ ψ ( r , t ) ∣ 2 w(r,t)=|\psi(r,t)|^2 w(r,t)=ψ(r,t)2

    • 最大可能位置: w ( r , t 0 ) ∣ r → r 0 → M a x w(r,t_0)|_{r\rightarrow r_0}\rightarrow Max w(r,t0)rr0Max

      • 位置平均值:
      • 位置平方均值:
      • 方差
  7. 设归一化函数为 ψ ( x ) \psi(x) ψ(x)

    • 动量的均值
      • 动量为 p x p_x px的平面波函数为: φ ( p x , x ) 1 / h exp ⁡ [ i ( x p x ) / ℏ ] \varphi (p_x,x)1/\sqrt{h}\exp[i(xp_x)/\hbar] φ(px,x)1/h exp[i(xpx)/]
        • ψ ( x ) = ∫ x ( p x ) φ ( p x , x ) d p x , c ( p x ) = ( φ ( p x , x ) , ψ ( x ) ) \psi(x)=\int x(p_x)\varphi(p_x,x)dp_x,c(p_x)=(\varphi(p_x,x),\psi(x)) ψ(x)=x(px)φ(px,x)dpx,c(px)=(φ(px,x),ψ(x))
        • p ‾ = ( ψ ( x ) , − i ℏ ∇ ψ ( x ) ) = ( ψ ( x ) , p ^ ψ ( x ) ) \overline{p}=(\psi(x),-i\hbar\nabla\psi(x))\\=(\psi(x),\hat{p}\psi(x)) p=(ψ(x),iψ(x))=(ψ(x),p^ψ(x))
    • 物理量T的均值: T ‾ = ( ψ ( x ) , T ^ ψ ( x ) ) \overline{T}=(\psi(x),\hat{T}\psi(x)) T=(ψ(x),T^ψ(x))
  8. 力学量的测量–量子坍缩

    • 设在力学量T在归一化波函数 φ 1 ( r ) \varphi_1(r) φ1(r) φ 2 ( r ) \varphi_2(r) φ2(r)的量子态上有确定的值 T 1 T_1 T1 T 2 T_2 T2,当系统处于叠加态时,进行力学量T的测量。 ψ ( r ) = c 1 φ 1 ( r ) + c 2 φ 2 ( r ) \psi(r)=c_1\varphi_1(r)+c_2\varphi_2(r) ψ(r)=c1φ1(r)+c2φ2(r)
      - 单次测量 测量值为 T 1 或 T 2 T_1或T_2 T1T2
      - 多样本测量 测量值为 T 1 T_1 T1的概念为 ∣ c 1 ∣ 2 |c_1|^2 c12, T 2 ∣ c 2 ∣ 2 测 量 的 平 均 值 : T ‾ = ∣ c 1 ∣ 2 T 1 + ∣ c 2 ∣ 2 T 2 = ( ψ ( x ) , T ^ ψ ( x ) ) T_2 \qquad |c_2|^2\\ 测量的平均值:\overline{T}=|c_1|^2T_1+|c_2|^2T_2=(\psi(x),\hat {T}\psi(x)) T2c22T=c12T1+c22T2=(ψ(x),T^ψ(x))
  9. 量子力学概率守恒定律

    • 全空间守恒关系: ∭ w ( r , t ) d r = 1 \iiint w(r,t)dr=1 w(r,t)dr=1

    • 局域守恒关系-概率连续方程

    • 概率流密度 J w ( r , t ) J_w(r,t) Jw(r,t):粒子单位时间通过单位面积的概率

    • 守恒关系 ∂ t w ( r , t ) + ∇ ⋅ J w ( r , t ) = 0 \partial_tw(r,t)+\nabla\cdot J_w(r,t)=0 tw(r,t)+Jw(r,t)=0

    • J w ( r , t ) J_w(r,t) Jw(r,t)的表示 i ℏ ∂ t ∣ ψ ( r , t ) ∣ 2 = − ℏ 2 2 m ∇ [ ψ ( r , t ) − ψ ( r , t ) ∇ ψ ∗ ( r , t ) ] i\hbar\partial_t|\psi(r,t)|^2=-\frac{\hbar^2}{2m}\nabla[\psi(r,t)-\psi(r,t)\nabla\psi^*(r,t)] itψ(r,t)2=2m2[ψ(r,t)ψ(r,t)ψ(r,t)]

    • J w ( r , t ) = − i ℏ 2 m [ ψ ∗ ( r , t ) ∇ ψ ( r , t ) − ψ ( r , t ) ∇ ψ ∗ ( r , t ) ] J_w(r,t)=-\frac{i\hbar}{2m}[\psi^*(r,t)\nabla\psi(r,t)-\psi(r,t)\nabla\psi^*(r,t)] Jw(r,t)=2mi[ψ(r,t)ψ(r,t)ψ(r,t)ψ(r,t)]

    • 微观粒子质量m
      - 质量密度 w m ( r , t ) = m w ( r , t ) w_m(r,t)=mw(r,t) wm(r,t)=mw(r,t)
      - 质量流密度 J m ( r , t ) = m J w ( r , t ) J_m(r,t)=mJ_w(r,t) Jm(r,t)=mJw(r,t)
      - 质量守恒定律 ∂ t w m ( r , t ) + ∇ ⋅ J m ( r , t ) = 0 \partial_tw_m(r,t)+\nabla\cdot J_m(r,t)=0 twm(r,t)+Jm(r,t)=0

    • 微观粒子电荷q
      - 电荷密度 w q ( r , t ) = q w ( r , t ) w_q(r,t)=qw(r,t) wq(r,t)=qw(r,t)
      - 电流密度 J q ( r , t ) = q J w ( r , t ) J_q(r,t)=qJ_w(r,t) Jq(r,t)=qJw(r,t)
      - 电荷守恒定律 ∂ t w q ( r , t ) + ∇ ⋅ J q ( r , t ) = 0 \partial_tw_q(r,t)+\nabla\cdot J_q(r,t)=0 twq(r,t)+Jq(r,t)=0

​ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QqRBIHg6-1597641496443)(./量子力学作业/量子力学5.png)]

量子力学6

  1. 定态Schordinger方程
    1. 分离变量法
      1. 条件:势场为U(r),不随时间变化
      2. 波函数表示为: ψ ( r , t ) = ψ ( r ) φ ( t ) \psi(r,t)=\psi(r)\varphi(t) ψ(r,t)=ψ(r)φ(t)
      3. 方程: [ − ℏ 2 2 m ∇ 2 + U ( r ) ] ψ ( r ) φ ( t ) = i ℏ ∂ t ψ ( r ) φ ( t ) [-\frac{\hbar^2}{2m}\nabla^2+U(r)]\psi(r)\varphi(t)=i\hbar\partial_t\psi(r)\varphi(t) [2m22+U(r)]ψ(r)φ(t)=itψ(r)φ(t)
      4. 注:两边同除 ψ ( r , t ) \psi(r,t) ψ(r,t),可将一边化成空间的函数,另一边为时间的函数。
      5. 左= [ − ℏ 2 2 m ∇ 2 + U ( r ) ] ψ ( r ) = E ψ ( r ) [-\frac{\hbar^2}{2m}\nabla^2+U(r)]\psi(r)=E\psi(r) [2m22+U(r)]ψ(r)=Eψ(r),右= i ℏ d d t φ ( t ) = E φ ( t ) i\hbar\frac{d}{dt}\varphi(t)=E\varphi(t) idtdφ(t)=Eφ(t)
      6. 含时函数解 φ ( t ) = exp ⁡ ( − i ℏ E t ) \varphi(t)=\exp(-\frac{i}\hbar Et) φ(t)=exp(iEt)
    2. 定态及定态方程
      • 定态:能量有确定值的量子态称为定态
        • ψ ( r , t ) = ψ ( r ) exp ⁡ ( − i ℏ E t ) \psi(r,t)=\psi(r)\exp(-\frac{i}{\hbar}Et) ψ(r,t)=ψ(r)exp(iEt)
        • 波函数随时间作简谐变化,也称稳态
      • 定态方程:波函数非含时部分满足的方程
        • [ − ℏ 2 2 m ∇ 2 + U ( r ) ] ψ ( r ) = E ψ ( r ) = H ^ ψ ( r ) [-\frac{\hbar^2}{2m}\nabla^2+U(r)]\psi(r)=E\psi(r)=\hat{H}\psi(r) [2m22+U(r)]ψ(r)=Eψ(r)=H^ψ(r)
      • 不同能量的定态的叠加不是定态,相同能量的定态构成的叠加态仍是定态
  2. 定态的性质
    • 定态有确定的能量 < H > = E , < H 2 > = E 2 , < Δ H 2 > = 0 <H>=E,<H^2>=E^2,<\Delta H^2>=0 <H>=E,<H2>=E2,<ΔH2>=0,H的均值,H的平方的均值,方差的;均值
    • 概念密度空间分布不随时间变化 w ( r , t ) = ∣ ψ ( r ) exp ⁡ ( − i ℏ E t ) ∣ 2 = ∣ ψ ( r ) ∣ 2 = w ( r ) w(r,t)=|\psi(r)\exp(-\frac{i}{\hbar}Et)|^2=|\psi(r)|^2=w(r) w(r,t)=ψ(r)exp(iEt)2=ψ(r)2=w(r)
    • 任一力学量的期望值不变 < T > = ( ψ ( r ) e x p ( − i ℏ E t ) , ( ^ T ) ψ ( r ) exp ⁡ ( − i ℏ E t ) ) = ( ψ ( r ) , T ^ ψ ( r ) ) <T>=(\psi(r)exp(-\frac{i}{\hbar}Et),\hat(T)\psi(r)\exp(-\frac{i}{\hbar}Et))=(\psi(r),\hat{T}\psi(r)) <T>=(ψ(r)exp(iEt),(^T)ψ(r)exp(iEt))=(ψ(r),T^ψ(r))
  3. 定态波函数的性质–1D
    • 连续性
      • U(x)有限(不一定连续), ψ ( x ) 和 ψ ′ ( x ) \psi(x)和\psi\prime(x) ψ(x)ψ(x)连续
      • U(x)无限跃变处, ψ ( x ) \psi(x) ψ(x)连续, ψ ′ ( x ) 不 连 续 \psi\prime(x)不连续 ψ(x)
    • 两个定理
      • ψ 1 ( x ) 和 ψ 2 ( x ) \psi_1(x)和\psi_2(x) ψ1(x)ψ2(x)是属于同一能量本征值E的两个定态波函数,则 ψ 1 ( x ) ψ ′ 2 ( x ) − ψ 1 ′ ( x ) ψ 2 ( x ) = c o n s t \psi_1(x)\psi\prime_2(x)-\psi_1\prime(x)\psi_2(x)=const ψ1(x)ψ2(x)ψ1(x)ψ2(x)=const
      • 设U(x)是规则势,如果存在束缚态,则必定不简并。
  4. 含时Schrodinger方程的一般解
    • 形式
      • ψ ( r , t ) = ∑ k ψ k ( r ) φ k ( t ) = ∑ k ψ k ( r ) exp ⁡ ( − i ℏ E k t ) \psi(r,t)=\sum_k\psi_k(r)\varphi_k(t)=\sum_k\psi_k(r)\exp(-\frac{i}{\hbar}E_kt) ψ(r,t)=kψk(r)φk(t)=kψk(r)exp(iEkt)
      • ψ ( r , t ) = ∫ E ψ E ( r ) exp ⁡ ( − i ℏ E t ) d E \psi(r,t)=\int_E\psi_E(r)\exp(-\frac{i}{\hbar}Et)dE ψ(r,t)=EψE(r)exp(iEt)dE
    • 求解
      • 问题 给定U(x)及初值 ψ ( r , 0 ) \psi(r,0) ψ(r,0),求解 ψ ( r , t ) \psi(r,t) ψ(r,t)
      • 步骤
        • 求定态解 ψ k ( r ) \psi_k(r) ψk(r), ψ k ( r ) {\psi_k(r)} ψk(r)构成正交完备系;
        • 写出通解 ψ ( r , t ) = ∑ k c k ψ k ( r ) exp ⁡ ( − i ℏ E k t ) \psi(r,t)=\sum_kc_k\psi_k(r)\exp(-\frac{i}{\hbar}E_kt) ψ(r,t)=kckψk(r)exp(iEkt)
        • 由初值确定系数 c k c_k ck,求得 ψ ( r , t ) \psi(r,t) ψ(r,t)
  5. 例题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z3TGGUYc-1597641496445)(./量子力学作业/量子力学6-例题.png)]

  1. 作业

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j7dJ4tXz-1597641496447)(./量子力学作业/量子力学6.png)]

量子力学7

一维无限深方势阱的定态

  1. 势的分布
    U ( x ) = { 0 0 < x < 2 a + ∞ o t h e r w i s e U(x)= \begin{cases} 0 \quad 0<x<2a\\ +\infty \quad otherwise \end{cases} U(x)={00<x<2a+otherwise

  2. 定态求解 2a

    1. 方程及边界条件

      • 方程

        [ − ℏ 2 2 m d 2 d 2 x + ∞ ] ψ 1 ( x ) = E ψ 1 ( x ) ( x < 0 ) [-\frac{\hbar^2}{2m}\frac{d^2}{d^2x}+\infty]\psi_1(x)=E\psi_1(x)\quad(x<0) [2m2d2xd2+]ψ1(x)=Eψ1(x)(x<0)

        − ℏ 2 2 m d 2 d 2 x ψ 2 ( x ) = E ψ 2 ( x ) ( 0 < x < 2 a ) - \frac{\hbar^2}{2m}\frac{d^2}{d^2x}\psi_2(x)=E\psi_2(x)\quad (0<x<2a) 2m2d2xd2ψ2(x)=Eψ2(x)(0<x<2a)

        [ − ℏ 2 2 m d 2 d 2 x + ∞ ] ψ 3 ( x ) = E ψ 3 ( x ) ( x > 2 a ) [-\frac{\hbar^2}{2m}\frac{d^2}{d^2x}+\infty]\psi_3(x)=E\psi_3(x)\quad(x>2a) [2m2d2xd2+]ψ3(x)=Eψ3(x)(x>2a)

      • 边界条件:

        ψ 1 ( 0 − ) = ψ 2 ( 0 + ) , ψ 2 ( 2 a − ) = ψ 3 ( 2 a + ) \psi_1(0^-)=\psi_2(0^+)\quad,\quad\psi_2(2a^-)=\psi_3(2a^+) ψ1(0)=ψ2(0+),ψ2(2a)=ψ3(2a+)

    2. 求解

      • 无量纲化: k = 2 m E / ℏ k=\sqrt{2mE}/\hbar k=2mE /

      • 解一般形式:

        ψ 1 ( x ) = ψ 3 ( x ) = 0 \psi_1(x)=\psi_3(x)=0 ψ1(x)=ψ3(x)=0

        ψ 2 ( x ) = A s i n ( k x + δ ) \psi_2(x)=Asin(kx+\delta) ψ2(x)=Asin(kx+δ) 注:A可由归一化条件确定,k, δ \delta δ由边界条件可确定

      • 特解

        ψ 2 ( 0 + ) = 0 , δ = 0 \psi_2(0^+)=0,\quad\delta=0 ψ2(0+)=0,δ=0

        ψ 2 ( 2 a − ) = 0 , 2 a k n = n π ( n = 1 , 2 , ⋯   ) \psi_2(2a^-)=0,\quad 2ak_n=n\pi(n=1,2,\cdots) ψ2(2a)=0,2akn=nπ(n=1,2,)

        归一化: A = 1 a A=\frac{1}{\sqrt{a}} A=a 1

    3. 结果讨论

      • 能量 E n = ( ℏ k n ) 2 2 m = ( ℏ n π ) 2 8 m a 2 ( n = 1 , 2 , ⋯   ) E_n=\frac{(\hbar k_n)^2}{2m}=\frac{(\hbar n\pi)^2}{8ma^2}\quad (n=1,2,\cdots) En=2m(kn)2=8ma2(nπ)2(n=1,2,)
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值