SparkRDD算子--flatMap算子

语法

val newRdd = oldRdd.flatMap(func)

源码

def flatMap[U](f : scala.Function1[T, scala.TraversableOnce[U]])(implicit evidence$4 : scala.reflect.ClassTag[U]) : org.apache.spark.rdd.RDD[U] = { /* compiled code */ }

作用

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

例子

package com.day1

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object oper {
    def main(args: Array[String]): Unit = {
        val config:SparkConf = new SparkConf().setMaster("local[*]").setAppName("wordCount")

        // 创建上下文对象
        val sc = new SparkContext(config)

        // flatMap算子
        val listRdd:RDD[List[Int]] = sc.makeRDD(Array(List(1,2),List(3,4)))

        val tupleRdd: RDD[Int] = listRdd.flatMap(datas => datas)

        tupleRdd.collect().foreach(println)
    }
}
输入:
([1,2],[3,4])
输出:
1 2 3 4

示意图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒 暄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值