SparkRDD算子--join算子

语法

val newRdd = oldRdd. join(otherDataset, [numTasks])

otherDataset表示join的对象

numTasks表示分区数

源码

def join[W](other : org.apache.spark.rdd.RDD[scala.Tuple2[K, W]]) : org.apache.spark.rdd.RDD[scala.Tuple2[K, scala.Tuple2[V, W]]] = { /* compiled code */ }

作用

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD

例子

package com.day1

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object oper {
    def main(args: Array[String]): Unit = {
        val config:SparkConf = new SparkConf().setMaster("local[*]").setAppName("wordCount")

        // 创建上下文对象
        val sc = new SparkContext(config)

        // join算子
        val rdd = sc.makeRDD(Array((1,"a"),(2,"b"),(3,"c")))
        val rdd1 = sc.makeRDD(Array((1,4),(2,5),(3,6)))

        val joinRdd = rdd.join(rdd1)
        joinRdd.collect().foreach(println)
    }
}


输入
(1,"a"),(2,"b"),(3,"c")
(1,4),(2,5),(3,6)
输出
(1,(a,4))
(2,(b,5))
(3,(c,6))

示意

(K,V).join((K,W)) => (K,(K,W))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒 暄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值