# 学习目标:
学习多种智能算法,生成优化序列用于排样,一次来提高排样效率
学习内容:
一、灰狼算法(GWO)
1、概述:
规模5~12匹狼,具有严格的四层等级制度,如图所示:
α 层:雌雄各一匹,负责对狼群的捕猎活动、休息地点与活动时间等作出决策,它们可能并不是狼群中最强健的狼,但却是经验丰富和善于管理狼群的狼。
β层:它是 α 狼的下属,辅助其做出的各种决策和其他狼群活动,传达命令以及反馈狼群的情况,而且是 α 狼的接班人。
δ层:服从 α 和 β 的指挥,可以指挥 ω,主要负责狼群的游走守卫领地、放哨、捕猎和照顾狼群中的“老弱病残”等。
ω层:命令的执行者,捕食到猎物后参与分食的狼
捕猎阶段
- 追踪,追赶和靠近猎物;
- 追逐、包围和骚扰猎物知道同停止移动;
- 攻击猎物
学者们从狼群的等级制度和捕食猎物等活动中获得启示,抽象出一种群体智能算法——灰狼或狼群算法(GWO)。
核心思想
对狼群的等级制度与捕猎活动进行抽象,从而建立起求解复杂优化问题的智能优化算法框架模型。
1)、将优化问题的一个解视为一匹灰狼,若干数量的解集视为狼群,将解集结果最优前3视为 α、β、δ 狼,剩余的解称之为ω狼;
2)、狼群捕猎时嗅到猎物气味抽象为优化问题的目标;
3)、根据狼群捕猎行为抽象出游走、包围和围猎三种智能行为
狼群捕猎模型如下:
2、算法描述
1)社会等级制度数学模拟
首先,假设狼群规模为 M,优化问题决策变量的数量为 n,即空间搜索维度为 n 维,Xi = (xi1, xi2, xi3,…, xij,…, xin)表示第 i 只灰狼在 n 维空间的位置,对问题的解集根据问题结果的优劣进行分类,狼群当前最优解为 α 狼位置,β、δ 狼的位置分别为次优解和第三优解,剩余的则为 ω 狼位置。
2)捕猎活动数学模拟
包围
灰狼群在 α 狼等带领下发现猎物,然后不断靠近猎物,整个捕猎活动从包围猎物开始,则 GWO 算法通过如下公式模拟狼群对猎物的包围行为:
Xp(t): 猎物位置,X: 灰狼位置
a的值在整个GWO算法的迭代过程中线性的从2减小至0,二r1,r2曲志伟[0,1]之间的随机向量。
围猎
灰狼具有识别猎物的位置并对猎物进行包围的能力,但是对猎物进行围猎通常是在α狼的领导下进行,β、δ 狼偶尔也会参与到围猎中。在GWO算法中认定α、β 和 δ 狼(最优解、次优解和第三优解)更了解猎物的位置信息,算法中保存这三匹狼的位置,同时令剩余的灰狼根据三匹狼的位置,应用一下数学式子进行更新:
向量|A|应该小于等于1
游走搜索
当系数向量|A|<=1时,灰狼群“猎物”进行围猎,当系数向量|A|>1时,灰狼会基于α、β 和 δ 狼的位置信息,分撒开游走探索猎物潜在的位置。
因此,通过控制收敛因子a在整个GWO算法的迭代过程中线性从2减小至0,实现对系数向量|A|值的控制,从而使得算法在游走搜索猎物、包围猎物和围捕猎物“智能行为”中切换。GWO算法流程图如下: