欧拉函数

欧拉函数

【引入】

在数论中,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。此函数以其首名研究者欧拉命名(Euler'so totient function),它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

【部分性质】

1.对于素数p, φ(p)=p-1。

2.除了N=2,φ(N)都是偶数。

3.当N为奇数时,φ(2*N)=φ(N)。

4.欧拉公式的延伸:一个数的所有质因子之和是φ(n)*n/2。

5.对于一个正整数N的素数幂分解 N=P1^q1*P2^q2*...*Pn^qn,φ(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn)。

6.设N为正整数,∑φ(d)=N (d|N)。根据性质5,我们可以在O(sqrt(n))的时间内求出一个数的欧拉函数值。

7.对于两个素数p,q ,φ(pq) =(p-1)*(q-1)。欧拉函数是积性函数,即φ(mn)=φ(n)*φ(m)只在(n,m)=1时成立。

【求欧拉函数的代码实现】

//普通:

ll Euler(ll n)
{
    ll res = n;
    for(ll i = 2;i*i <= n;i++)
    {
        if(n%i == 0) res = res/i*(i-1);
        while(n%i == 0) n /= i;
    }
    if(n > 1) res = res/n*(n-1);
    return res;
}


//线性打表法

void Init ()
{
    int i, j;
    for (i=1; i<N; i++)
        oula[i] = i;
    for (i=2; i<N; i++)
    {
        if (oula[i] == i)
        {
            oula[i] = oula[i] / i * (i - 1);
            for (j=i+i; j<N; j+=i)
                oula[j] = oula[j] / i * (i - 1);
        }
    }
}


//素数筛法求欧拉函数

void getphi()
{
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!mark[i])
        {
            phi[i]=i-1; 
            pri[++tot]=i;
        }
        for(int j=1;j<=tot;j++)
        {
            int x=pri[j];
            if(i*x>n)  break;
            mark[i*x]=1;
            if(i%x==0)
            {
                phi[i*x]=phi[i]*x; 
                break;
            }
            else phi[i*x]=phi[i]*phi[x];
        }
    }
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值