ArcGIS Pro中的回归分析浅析(下)地理加权回归工具(GWR)使用&小结

本文介绍了地理加权回归(GWR)在解决全局线性回归(GLR)非稳定性问题上的优势。GWR允许每个要素拥有独立的线性方程,更好地反映区域内的局部关系。文章以911电话呼叫次数为例,详细讲解了GWR工具的参数设置,如输入要素、因变量、模型类型、解释变量、邻域类型和带宽选择,并讨论了如何评估和解释模型结果。GWR工具在模型精度和空间关系分析方面提供了更深入的洞察,是地理空间数据分析的重要方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一节我们讲了GLR广义线性回归,它是一种全局模型,可以构造出最佳描述研究区域中整体数据关系的方程。如果这些关系在研究区域中是一致的,则 GLR 回归方程可以对这些关系进行很好的建模。不过,当这些关系在研究区域的不同位置具有不同的表现形式时,回归方程在很大程度上为现有关系混合的平均值;如果这些关系表示两个极值,那么全局平均值将不能为任何一个极值构建出很好的模型。当解释变量表现出不稳定的关系(例如人口变量可能是研究中某些地区911呼叫量的重要影响因子,但在其他地区可能是较弱的影响因子,这就是不平稳的表现)时,全局模型通常会失效。

为了解决非稳健的问题,提高模型的性能,可以使用将区域变化合并到回归模型中的方法,也就是GWR(Geographically Weighted Regression)地理加权回归的方法。

从数学角度上讲,广义线性回归是将整个研究区域给定一个线性方程。地理加权回归是给每一个要素一个独立的线性方程。

在GWR中,每一个要素的方程都是由邻近的要素计算得到的。(根据地理学第一定律,任何事物都是与其他事物相关的,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JGiser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值