任务说明
- 学习主题:论文分类(数据建模任务),利用已有数据建模,对新论文进行类别分类;
- 学习内容:使用论文标题完成类别分类;
- 学习成果:学会文本分类的基本方法、
TF-IDF
等;
数据处理步骤
在原始arxiv论文中论文都有对应的类别,而论文类别是作者填写的。在本次任务中我们可以借助论文的标题和摘要完成:
- 对论文标题和摘要进行处理;
- 对论文类别进行处理;
- 构建文本分类模型;
文本分类思路
- 思路1:TF-IDF+机器学习分类器
直接使用TF-IDF对文本提取特征,使用分类器进行分类,分类器的选择上可以使用SVM、LR、XGboost等
- 思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建分类器
- 思路3:WordVec+深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRnn或者BiLSTM。
- 思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。
具体代码实现以及讲解
为了方便大家入门文本分类,我们选择思路1和思路2给大家讲解。首先完成字段读取:
# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
'report-no', 'categories', 'license', 'abstract', 'versions',
'update_date', 'authors_parsed'], count=None):
'''
定义读取文件的函数
path: 文件路径
columns: 需要选择的列
count: 读取行数
'''
data = []
with open(path, 'r') as f:
for idx, line in enumerate(f):
if idx == count:
break
d = json.loads(line)
d = {col : d[col] for col in columns}
data.append(d)
data = pd.DataFrame(data)
return data
data = readArxivFile('arxiv-metadata-oai-snapshot.json',
['id', 'title', 'categories', 'abstract'])
data
id | title | categories | abstract | |
---|---|---|---|---|
0 | 0704.0001 | Calculation of prompt diphoton production cros... | hep-ph | A fully differential calculation in perturba... |
1 | 0704.0002 | Sparsity-certifying Graph Decompositions | math.CO cs.CG | We describe a new algorithm, the $(k,\ell)$-... |
2 | 0704.0003 | The evolution of the Earth-Moon system based o... | physics.gen-ph | The evolution of Earth-Moon system is descri... |
3 | 0704.0004 | A determinant of Stirling cycle numbers counts... | math.CO | We show that a determinant of Stirling cycle... |
4 | 0704.0005 | From dyadic $\Lambda_{\alpha}$ to $\Lambda_{\a... | math.CA math.FA | In this paper we show how to compute the $\L... |
... | ... | ... | ... | ... |
1796906 | supr-con/9608008 | On the origin of the irreversibility line in t... | supr-con cond-mat.supr-con | We report on measurements of the angular dep... |
1796907 | supr-con/9609001 | Nonlinear Response of HTSC Thin Film Microwave... | supr-con cond-mat.supr-con | The non-linear microwave surface impedance o... |
1796908 | supr-con/9609002 | Critical State Flux Penetration and Linear Mic... | supr-con cond-mat.supr-con | The vortex contribution to the dc field (H) ... |
1796909 | supr-con/9609003 | Density of States and NMR Relaxation Rate in A... | supr-con cond-mat.supr-con | We show that the density of states in an ani... |
1796910 | supr-con/9609004 | Ginzburg Landau theory for d-wave pairing and ... | supr-con cond-mat.supr-con | The Ginzburg Landau theory for d_{x^2-y^2}-w... |
1796911 rows × 4 columns
为了方便数据的处理,我们可以将标题和摘要拼接一起完成分类。
data['text'] = data['title'] + data['abstract']
data['text'] = data['text'].apply(lambda x: x.replace('\n',' '))
data['text'] = data['text'].apply(lambda x: x.lower())
data = data.drop(['abstract', 'title'], axis=1) # df.drop()删除指定的行或列
data
id | categories | text | |
---|---|---|---|
0 | 0704.0001 | hep-ph | calculation of prompt diphoton production cros... |
1 | 0704.0002 | math.CO cs.CG | sparsity-certifying graph decompositions we d... |
2 | 0704.0003 | physics.gen-ph | the evolution of the earth-moon system based o... |
3 | 0704.0004 | math.CO | a determinant of stirling cycle numbers counts... |
4 | 0704.0005 | math.CA math.FA | from dyadic $\lambda_{\alpha}$ to $\lambda_{\a... |
... | ... | ... | ... |
1796906 | supr-con/9608008 | supr-con cond-mat.supr-con | on the origin of the irreversibility line in t... |
1796907 | supr-con/9609001 | supr-con cond-mat.supr-con | nonlinear response of htsc thin film microwave... |
1796908 | supr-con/9609002 | supr-con cond-mat.supr-con | critical state flux penetration and linear mic... |
1796909 | supr-con/9609003 | supr-con cond-mat.supr-con | density of states and nmr relaxation rate in a... |
1796910 | supr-con/9609004 | supr-con cond-mat.supr-con | ginzburg landau theory for d-wave pairing and ... |
1796911 rows × 3 columns
由于原始论文有可能有多个类别,所以也需要处理:
# 多个类别,包含子分类
data['categories'] = data['categories'].apply(lambda x : x.split(' ')) # 返回每个类别形成的列表
# 单个类别,不包含子分类
data['categories_big'] = data['categories'].apply(lambda x : [xx.split('.')[0] for xx in x]) # 返回每个大类类别形成的列表
然后将类别进行编码,这里类别是多个,所以需要多编码:
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
data_label = mlb.fit_transform(data['categories_big'].iloc[:])
data_label
array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 1],
[0, 0, 0, ..., 0, 0, 1],
[0, 0, 0, ..., 0, 0, 1]])
思路1
思路1使用TFIDF提取特征:
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
data_tfidf = vectorizer.fit_transform(data['text'].iloc[:])
data_tfidf
<1796911x598592 sparse matrix of type '<class 'numpy.float64'>'
with 151272947 stored elements in Compressed Sparse Row format>
由于这里是多标签分类,可以使用sklearn的多标签分类进行封装:
# 划分训练集和验证集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data_tfidf, data_label,
test_size = 0.2,random_state = 1)
# 构建多标签分类模型
from sklearn.multioutput import MultiOutputClassifier
from sklearn.naive_bayes import MultinomialNB
clf = MultiOutputClassifier(MultinomialNB()).fit(x_train, y_train)
from sklearn.metrics import classification_report
print(classification_report(y_test, clf.predict(x_test)))
precision recall f1-score support
0 0.00 0.00 0.00 13
1 0.00 0.00 0.00 106
2 0.00 0.00 0.00 275
3 0.00 0.00 0.00 5
4 0.97 0.82 0.89 56225
5 0.00 0.00 0.00 32
6 0.00 0.00 0.00 2
7 0.00 0.00 0.00 482
8 0.00 0.00 0.00 66
9 0.00 0.00 0.00 175
10 0.00 0.00 0.00 40
11 0.91 0.73 0.81 59797
12 0.86 0.84 0.85 62959
13 0.00 0.00 0.00 157
14 0.00 0.00 0.00 623
15 0.16 0.00 0.00 5696
16 0.00 0.00 0.00 83
17 0.87 0.09 0.16 16911
18 0.93 0.10 0.18 8578
19 0.26 0.00 0.00 4726
20 0.82 0.52 0.64 30796
21 0.91 0.34 0.50 27934
22 0.90 0.81 0.85 95914
23 0.02 0.00 0.00 12695
24 0.00 0.00 0.00 63
25 0.12 0.00 0.00 7035
26 0.11 0.00 0.00 4207
27 0.56 0.01 0.01 9741
28 0.00 0.00 0.00 151
29 0.82 0.14 0.25 36026
30 0.00 0.00 0.00 8
31 0.00 0.00 0.00 312
32 0.85 0.04 0.08 6604
33 0.14 0.00 0.00 2408
34 0.96 0.13 0.23 21601
35 0.00 0.00 0.00 304
36 0.84 0.06 0.11 16406
37 0.00 0.00 0.00 40
micro avg 0.90 0.53 0.66 489196
macro avg 0.32 0.12 0.15 489196
weighted avg 0.82 0.53 0.59 489196
samples avg 0.69 0.62 0.64 489196
思路2
思路2使用深度学习模型,单词进行词嵌入然后训练。将数据集处理进行编码,并进行截断:
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data['text'].iloc[:100000],
data_label[:100000],
test_size = 0.95,random_state = 1)
# parameter
max_features= 500
max_len= 150
embed_size=100
batch_size = 128
epochs = 5
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
tokens = Tokenizer(num_words = max_features)
tokens.fit_on_texts(list(data['text'].iloc[:100000]))
y_train = data_label[:100000]
x_sub_train = tokens.texts_to_sequences(data['text'].iloc[:100000])
x_sub_train = sequence.pad_sequences(x_sub_train, maxlen=max_len)
定义模型并完成训练:
# LSTM model
# Keras Layers:
from keras.layers import Dense,Input,LSTM,Bidirectional,Activation,Conv1D,GRU
from keras.layers import Dropout,Embedding,GlobalMaxPooling1D, MaxPooling1D, Add, Flatten
from keras.layers import GlobalAveragePooling1D, GlobalMaxPooling1D, concatenate, SpatialDropout1D# Keras Callback Functions:
from keras.callbacks import Callback
from keras.callbacks import EarlyStopping,ModelCheckpoint
from keras import initializers, regularizers, constraints, optimizers, layers, callbacks
from keras.models import Model
from keras.optimizers import Adam
sequence_input = Input(shape=(max_len, ))
x = Embedding(max_features, embed_size, trainable=True)(sequence_input)
x = SpatialDropout1D(0.2)(x)
x = Bidirectional(GRU(128, return_sequences=True,dropout=0.1,recurrent_dropout=0.1))(x)
x = Conv1D(64, kernel_size = 3, padding = "valid", kernel_initializer = "glorot_uniform")(x)
avg_pool = GlobalAveragePooling1D()(x)
max_pool = GlobalMaxPooling1D()(x)
x = concatenate([avg_pool, max_pool])
preds = Dense(38, activation="sigmoid")(x)
model = Model(sequence_input, preds)
model.compile(loss='binary_crossentropy',optimizer=Adam(lr=1e-3),metrics=['accuracy'])
model.fit(x_sub_train, y_train,
batch_size=batch_size,
validation_split=0.2,
epochs=epochs)
WARNING:tensorflow:From D:\softwares\DevTool\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
Train on 80000 samples, validate on 20000 samples
Epoch 1/5
80000/80000 [==============================] - 570s 7ms/step - loss: 0.1266 - accuracy: 0.9677 - val_loss: 0.0764 - val_accuracy: 0.9757
Epoch 2/5
80000/80000 [==============================] - 622s 8ms/step - loss: 0.0694 - accuracy: 0.9768 - val_loss: 0.0636 - val_accuracy: 0.9786
Epoch 3/5
80000/80000 [==============================] - 621s 8ms/step - loss: 0.0609 - accuracy: 0.9789 - val_loss: 0.0576 - val_accuracy: 0.9800
Epoch 4/5
80000/80000 [==============================] - 620s 8ms/step - loss: 0.0572 - accuracy: 0.9799 - val_loss: 0.0557 - val_accuracy: 0.9805
Epoch 5/5
80000/80000 [==============================] - 618s 8ms/step - loss: 0.0553 - accuracy: 0.9804 - val_loss: 0.0541 - val_accuracy: 0.9808
<keras.callbacks.callbacks.History at 0x1b6b7ca1bc8>