Arnold变换

Arnold变换又称之为猫脸变换,利用Arnold变换(又称猫脸变换)可以对图像进行置乱。

Arnold变换使得原本有意义的图像变成一张无意义的图像,该变换可以在其它图像处理前对图像做预处理,例如在数字盲水印嵌入前对水印进行置乱。也可以用于普通的图像加密。对于不同的数字图像,加密者都可以用相应的离散化Arnold矩阵进行变换,图像的位置变换实际上是对应点的灰度值或者RGB颜色值的移动,即将原来点(x,y)处的值对应的灰度值移动至变换后的位置处,起到置乱的作用。Arnold变换不仅可以用于图像置乱,也可以用于其它数据的置乱和加密,变换公式如下:

在这里插入图片描述

其中mod是取模运算,N是正方形图像的边长,( x’ , y’ )是像素点( x , y )变换后的坐标。

当图像是一张方形的图像时,Arnold变换存在逆变换,经过N次Arnold变换后的数据可以通过N次逆变换恢复数据,逆变换公式如下:
在这里插入图片描述

通常一次Arnold变换达不到理想效果,需要对图像进行连续多次的变换。Arnold变换具有周期性,即对图像连续进行Arnold变换,最终又能得到原图像。变换的周期和图像的尺寸有关,统计如下表:

表1-1 Arnold变换周期

边长N2481632641282465121024
周期T33612244896192384768

变换周期计算代码

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

'''
功能:计算Arnold变换周期,默认为狭义Arnold变换
参数:
N--正方形图像宽的像素数
Arnold变换矩阵参数,a、b、c、d
'''

def Arnold_period(N,a=1,b=1,c=1,d=2):
  #计算(posx,posy)位置Arnold变换的周期(与整个图像Arnold周期应该一致,待证)
  posx=0
  posy=1
  #变换的初始位置
  x0=posx
  y0=posy
  T=0
  while True:
    x=(a*x0+b*y0)%N
    y=(c*x0+d*y0)%N
    #x0,y0同时更新
    x0,y0=x,y
    T+=1
    if(x==posx and y==posy):
      break
  return T

def main():
  N=[]
  T=[]
  for i in range(1,11):
    N.append(2**i)
    T.append(Arnold_period(2**i,1,1,1,2))
  plt.axis('off')
  #绘制表格展示结果
  data=dict()
  data['N']=N
  data['T']=T
  print(data)
  df=pd.DataFrame(data)
  plt.table(cellText=df.values,colLabels=df.columns,bbox=[0,0,1,1],loc='center')
  plt.show()


if __name__== '__main__':
  main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

z2bns

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值