Johnson算法实现流水作业最优调度

该博客介绍了Johnson算法在流水作业最优调度问题中的应用。通过C/C++代码展示了如何将作业分为两组并排序,然后组合成最优调度序列,并计算最短完成时间。在示例中,给出了具体的输入和输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 算法描述

  • N 1 = { i ∣ a i < b i } N_1 = \{i | a_i < b_i \} N1={iai<bi}, N 2 = { i ∣ a i ≥ b i } N_2 = \{ i| a_i \geq b_i\} N2={iaibi};
  • N 1 N_1 N1中的作业按照 a i a_i ai的非降序排列,将 N 2 N_2 N2中的作业按照 b i b_i bi的非升序排列;
  • N 1 N_1 N1中的作业拼接 N 2 N_2 N2中的作业构成 J o h n s o n Johnson Johnson算法的最优作业调度。

2. C/C++代码实现

/**************************************************
*Johnson算法实现流水作业最优调度 
***************************************************/
#include<iostream>
#include<algorithm>
using namespace std;

const int maxn = 1000;


class JobType {
public:
	int key;
	int index;
	bool job;
	bool operator < (const JobType& j)const {
		return key < j.key;//重载运算符<,以键值key为关键字排序
	}
};
int FlowShop(int n, int a[], int b[], int c[])
{
	JobType* d = new JobType[n];
	for (int i = 0; i < n; i++)
	{
		d[i].key = a[i] < b[i] ? a[i] : b[i];//记录ai bi中最小值为key
		d[i].job = a[i] < b[i]; //ai < bi N1 = {i | ai < bi} N2 = {i | ai >= bi}
		d[i].index = i;
	}
	sort(d, d + n);//并不是简单的快速排序 可能还有堆排序等排序算法  根据数据的规模进行选择

	int j = 0;
	int k = n - 1;
	for (int i = 0; i < n; i++)
		//因为最后的调度序列是 排序之后的{N1,N2}
		//前面排序之后N1是非降序  N2也是非降序  
		//因此在排序之后序列中遍历时  遇到job == 0的下标 主要从c[]最后下标开始 依次递减
		if (d[i].job) // N1 i按照ai的非降序排列
			c[j++] = d[i].index;
		else //N2 i按照bi的非升序排列 
			c[k--] = d[i].index;
	
	//输出调度序列
	cout << "流水作业调度序列为:";
	for (int i = 0; i < n; i++)
		cout << c[i] << " ";
	cout << endl;
	
	//计算最短的流水作业调度时间
	j = a[c[0]]; //j记录工序ai完成的时间
	k = j + b[c[0]]; //k记录工序bi完成的时间
	for (int i = 1; i < n; i++)
	{
		j += a[c[i]]; //工序a进行到目前用的时间
		k = j < k ? k + b[c[i]] : j + b[c[i]];
		//工序a进行到i用的时间j 和 工序b进行到i-1用的时间k  作比较
		/*若j > k, i-1作业的b工序已经结束了 
		但是i作业的a工序还没结束 此时b需要等待其结束 
		那么i作业的b工序完成时间为 k = j + bi*/

		/*否则j <= k, i-1作业的b工序还没结束
		i作业的a工序就已经结束  此时i作业的b工序则不需要等待直接进行即可  
		那么i作业的b工序完成时间为k = k + bi*/
	}

	delete[]d;
	return k;
}

int main()
{
	int n;
	cin >> n;
	int a[maxn], b[maxn], c[maxn];
	for (int i = 0; i < n; i++)
		cin >> a[i] >> b[i];
	

	int t = FlowShop(n, a, b, c);
	
	cout << "流水作业调度最短完成时间是:" << t << endl;
	return 0;
}
/*
5
2 5
4 2
3 3
6 1
1 7
*/

3. 运行结果

5
2 5
4 2
3 3
6 1
1 7
流水作业调度序列为:4 0 2 1 3
流水作业调度最短完成时间是:19

4. 具体动态规划推导过程

具体推导过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值