为什么基础解系的个数是n-r

Ax=b的解(满足公式的x)有三种情况,无解,有唯一解和有无穷解。基础解系讲的是有无穷解的情况。只有在A不满秩的时候,才会有无解或有无穷解的情况出现。

基础解系的“个数”不是指有多少个解,而是指这些无穷个解所构成的子空间的秩。比如,若矩阵的秩为r=n-1,那么,基础解系的就是1了。但是,这个1不是指这个基础解系里只有一个解(向量),而是指这个基础解系的空间的秩是1,在这个秩与为1的空间中有无数解(向量)x,而这些x都满足y=Ax。

如果解空间的秩为1,那么,所有的解都在一根直线上,你拿其中任何一个解出来,其它解与它都是某个倍数的关系。

当然,r可以不止为1呀,2,3…都可以,极限或就是n-1了。r越小,基础解系就越大,解空间就比A能张成秩更大的空间了。

基础解系的个头就是自由变量的个数。比如一个有3个未知数的线性方程组(3阶矩阵),你想化简成一个三角矩阵,没成,而是化成了一个两个台阶的梯形矩阵。这时,有一个方程含有3个未知数(x₁,x₂,x₃),一个含有2个(x₂,x₃),另外一个是全零方程。在这种形态下,通常我们把x₃作为一个自由变量,它的值不是从方程组里推算得到的。而是有我们“人工”赋予的。有了人工赋值的x₃后,剩余的两个方程组就形成一个满秩的二阶矩阵了,x₁,x₂的借就可以由方程组来“唯一”确定了。

每一个人造的x₃和其它两个方程算得的x₁,x₂形成一个解。每选一个不同的x₃,就得到一组不同的x₁x₂,形成又一组解。由于x₃被人来选的不同,你就得到不同的解,它们都满足原方程,它们形成一个“解空间”。但所有的这些解都在一根直线上,所以,这个解空间的秩为1。为啥是以1?因为只有一个可变(人选)量么。

3个未知数,就是n=3;梯形台阶只有两级,就是秩为2,r=2。可由人选的变量只有一个,解空间的秩就是1,本案n-r=1,矩阵阶数-矩阵秩=解空间秩。

虽然这是一个3阶矩阵的例子,但对n阶矩阵都适用。

对于Ax=b,若A满秩,则x有唯一解,这就扯不上“基础解系”。若A不满秩,x就有两种情况,一种是无解,这也扯不到基础解系;若有解,则必有无穷多解,这就涉及了基础解系了。

基础解系不是指某一个解,一个有(无穷)解的不满秩方程组的具体的解叫“特解”,而“解系”是所有这些解的集合,是“解空间”。这个解空间是能使等式成立的那些x的所在地,在这个解空间之外的x就都不能使Ax=b成立。“基础”则是指这个解空间的里“基”。如果这个解空间的秩是1,那就只有一个基,如果解空间的秩为2,则它的基向量就有2个。这个清楚的吧?

A的秩与解空间的秩的和正好等于n,在n这个数的框架里,A的秩与解空间的秩正好是此消彼长的关系。

秩为r那么有效方程的个数就是r个,如果n=r的话我们就能得到唯一确定的解,如果r<n则还有n-r个变量是不确定的,我们把它们移到方程右边使得r个未知数可由它们表示,这样每个未知数都可由这n-r个来表示了,通过给这n-r个赋值来得到基础解系。

### 回答1: 对于齐次线性方程组 $Ax = 0$,如果 $A$ 是一个 $m \times n$ 的矩阵,那么我们可以定义一个新的矩阵 $B$,它是 $A$ 的增广矩阵,即 $B=[A|0]$。 我们将 $B$ 进行行变换,使得它的行阶梯形式为: $$\left[\begin{matrix} I_r & F \\ 0 & 0 \end{matrix}\right]$$ 其中 $r$ 是 $B$ 的秩,$I_r$ 是 $r$ 阶单位矩阵,$F$ 是 $r \times (n-r)$ 的矩阵。注意到这里的 $I_r$ 是 $r$ 阶,而不是 $n$ 阶。 我们可以将基础解系写成以下形式: $$\begin{cases} x_1 = -F_1 x_{r+1} - F_2 x_{r+2} - \cdots - F_{n-r} x_n \\ x_2 = x_{r+1} \\ x_3 = x_{r+2} \\ \vdots \\ x_r = x_{n-1} \end{cases}$$ 其中 $F_i$ 是 $F$ 的第 $i$ 列。这个基础解系的维数是 $n-r$,等于 $B$ 的列数减去 $B$ 的秩。 由于 $B$ 的秩等于 $A$ 的秩,所以基础解系的维数也等于 $n-r$,即等于 $A$ 的列数减去 $A$ 的秩。因此,我们得到了结论:齐次线性方程组 $Ax=0$ 的基础解系的维数等于 $n$ 减去 $A$ 的秩。 ### 回答2: 齐次方程是指形如Ax=0的线性方程组,其中A是一个m行n列的矩阵。矩阵A的秩是指A的列向量组的极大线性无关组中的向量个数,用r(A)表示。 解齐次方程可以通过高斯消元法或者矩阵的特征值和特征向量来求解。如果矩阵A的秩为r,那么根据线性代数的基本定理,方程Ax=0的解的个数为n-r。 基础解系即为齐次方程的解中的极大线性无关组。假设齐次方程的解向量组为{v1, v2, ..., vn-r},那么这个向量组是线性无关的并且满足方程Ax=0。另外,可以通过线性组合的方式表达出解空间中的其他解。由于矩阵A的秩为r,所以齐次方程的解空间的维数等于n-r。 根据线性代数的理论,线性无关的向量个数等于向量组的维数。所以,齐次方程的基础解系的向量个数等于n-r,即等于秩n减去矩阵A的秩。这就是为什么齐次方程的基础解系等于n减秩的原因。 总结起来,齐次方程的基础解系等于n减去矩阵A的秩,是因为基础解系是齐次方程的解中的极大线性无关组,而矩阵A的秩决定了解空间的维数和基础解系的向量个数。 ### 回答3: 齐次方程的基础解系等于n减秩的原因是基于线性代数中的一些基本定理和概念。 首先,我们知道一个齐次线性方程组可以表示为AX=0的形式,其中A是一个m×n的矩阵,X是一个n维向量。方程组的解可以表示为X=Cx,其中Cx是A的某一个列向量的线性组合。当Cx=0时,这个解被称为齐次解。 我们知道,一个矩阵的秩是指矩阵的列向量中线性无关的列的最大数量。当一个矩阵的秩等于它的列数n时,该矩阵被称为满秩矩阵。反之,当一个矩阵的秩小于它的列数n时,该矩阵被称为非满秩矩阵。 根据线性代数的基本定理,对于一个非满秩矩阵A,方程组AX=0必然存在非零解。换句话说,存在非零解说明方程组有无穷多个解。而这些非零解可以表示为齐次解的线性组合。 那么,基础解系就是齐次解的一组线性无关的解向量。由于一个非满秩矩阵A的零空间的维数为n减去它的秩,所以基础解系的向量数量为n减去矩阵A的秩。 综上所述,齐次方程的基础解系等于n减去矩阵A的秩。这个结论是基于非满秩矩阵存在非零解、零空间维数与矩阵秩之间的关系得出的。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值