线性分组码的译码

名词介绍在这里插入图片描述

	首先明确:在译码时,译码器已知y,未知c和e
  • c:encoder发送的码字
  • y:decoder接收到的码字
  • c^:decoder译码后的结果
  • e = (en-1,en-2,…,ei,…,e0):我们称之为错误图样 ;它的第i比特表示发送的编码c中第i位是否发生了错误,ei=1表示第i位有错误,ei = 0表示错。
  • e^:编码器推测出的错误图样
  • 定义s= yHT:称之为伴随式、校验子、校正子

译码过程

如果decoder能推测出错误图像e^,那就可以给出译码结果 c^ = y + e^, 因此如果我们可以推断出e^即可完成译码。
而我们从伴随式可以知道s = yHT=(c+e)HT = eHT这表明伴随式的值只取决于错误图样,和发送的码字无关,因此推测错误图样,我们可以从伴随式入手。这里我们要知道:推测错误图样实际上就是在E(ei的集合)中寻找一个ei,故完全可以通过伴随式进行求解。

  1. y是译码器的已知量,因此我们可以通过y计算出其伴随式s,然后计算s = eHT,求得e即为错误图样。
  2. 假设e0为解,则(e0+c)均为伴随式的解(c属于C),那么下面的问题就是我们从这些解当中选取哪一个呢?
  3. 我们在译码时,译得的c^应与y距离最近;由于dH(y, c^)= W(e),因此在选择错误图样时,要选取满足s = eHT中码重最小的那个,即错误个数最少的那个错误图样来纠正错误,我们将其称之为可纠正错误图样。我们用得到的这个可纠正错误图样进行译码:c^ = y + e^。

总结

对于decoder来说每个y都可以计算得到其唯一的伴随式s,且我们有 c^ = y+ e^。 由上述分析可知,e^即为可纠正错误图像,而这个可纠正错误图样时通过对伴随式 s=eHT求解得到的。故首先通过事先的工作对每一种可能的伴随式计算其可纠正错误图样。当decoder收到一个n比特组y后,用y和已知的H计算出对应的伴随式,并根据这个伴随式对应的可纠正错误图像对图像进行纠错。

为什么可以通过伴随式求解可纠正错误图样

 s = y*H = (c + e)H = eH %这里的H均为转置,由于我们要预测的e^实际上就是从满足s=eH的e的集合中
                         选取的,故我们的e^一定可以从这个等式中得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值