人脸检测-ROI与泛洪填充(5)

ROI(region of interest)感兴趣区域:

图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理。

ROI的获取:

src = cv.imread("E:/picture/demo.jpg", 1);
cv.namedWindow("input image", src);
face = src[50:250, 100:300];
gray = cv.CvtColor(face, COLOR_BGR2GRAY);
src[50:250, 100:300] = gray;
imshow("changed image", src);

泛洪填充

洪泛算法的讲解:https://blog.csdn.net/mao0514/article/details/47041409
我们无需关注其具体算法实现,知道怎么使用就足够了。

使用floodFill填充彩色图像:

def fill_color_demo(image):
    copyImg = image.copy();
    h, w = image.shape[:2];
    mask = np.zeros([h+2, w+2],np.uint8);
    cv.floodFill(copyImg, mask, (30, 30), (0, 255, 255), (100, 100, 100), (50, 50, 50), cv.FLOODFILL_FIXED_RANGE);
    #填充过程:从(30,30)开始取这个像素点;颜色填充设置为(0,255, 255);
    #S(100,100,100),表示当前观察像素值与其部件邻域像素值或者待加入该部件的种子像素之间的亮度或颜色之负差的最大值。
    #(50,50,50)表示当前观察像素值与其部件邻域像素值或者待加入该部件的种子像素之间的亮度或颜色之正差的最大值。
    cv.imshow("fill_color_demo", copyImg);

使用floodlFill()填充灰度图像:

def fill_binary():
    image = np.zeros([400, 400, 3], np.uint8);
    image[100:300, 100:300, :] = 255;
    cv.imshow("fill_binary_demo", image);
    mask = np.ones([402, 402, 1], np.uint8);
    mask[101:301, 101:301]  = 0;
    cv.floodFill(image, mask, (200,202), (0, 0 ,140), cv.FLOODFILL_MASK_ONLY);
    cv.imshow("fill_binary", image);

floodFill()函数:

floodFill函数详解

[openv.org的解释](https://docs.opencv.org/4.1.0/d7/d1b/group__imgproc__misc.html#ga366aae45a6c1289b341d140839f18717)

这个函数有2个版本,我们关注有掩膜的那个版本。
我们重点强调一下,mask的大小要设置为(height+1, width+1);且Since the mask is larger than the filled image, a pixel (x,y) in image corresponds to the pixel (x+1,y+1) in the mask.
在这里插入图片描述

针对上述两代代码的详细分析:

  • 首先,两段代码都有mask参数,但是泛洪填充不能跨越输入掩码中的非零像素。所以在第一段代码时,我们设置了cv.FLOODFILL_FIXED_RANGE参数—(泛洪的范围时浮动的),且将mask设置为全0,所以可以对整个图片进行泛洪填充;
  • 在第二段代码时,我们设置cv.FLOODFILL_MASK_ONLY(—不会对图像有更改仅使用给定的值填充mask),将mask的对应部分设置为0(将要进行泛洪的地方设置为0),剩余部分设置为1。
  • 由此可以知道,mask的初始化和cv.FLOODFILL_MASK_ONLY/cv.FLOODFILL_FIXED_RANGE是一一对应的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值