人脸检测-ROI与泛洪填充(5)

ROI(region of interest)感兴趣区域:

图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理。

ROI的获取:

src = cv.imread("E:/picture/demo.jpg", 1);
cv.namedWindow("input image", src);
face = src[50:250, 100:300];
gray = cv.CvtColor(face, COLOR_BGR2GRAY);
src[50:250, 100:300] = gray;
imshow("changed image", src);

泛洪填充

洪泛算法的讲解:https://blog.csdn.net/mao0514/article/details/47041409
我们无需关注其具体算法实现,知道怎么使用就足够了。

使用floodFill填充彩色图像:

def fill_color_demo(image):
    copyImg = image.copy();
    h, w = image.shape[:2];
    mask = np.zeros([h+2, w+2],np.uint8);
    cv.floodFill(copyImg, mask, (30, 30), (0, 255, 255), (100, 100, 100), (50, 50, 50), cv.FLOODFILL_FIXED_RANGE);
    #填充过程:从(30,30)开始取这个像素点;颜色填充设置为(0,255, 255);
    #S(100,100,100),表示当前观察像素值与其部件邻域像素值或者待加入该部件的种子像素之间的亮度或颜色之负差的最大值。
    #(50,50,50)表示当前观察像素值与其部件邻域像素值或者待加入该部件的种子像素之间的亮度或颜色之正差的最大值。
    cv.imshow("fill_color_demo", copyImg);

使用floodlFill()填充灰度图像:

def fill_binary():
    image = np.zeros([400, 400, 3], np.uint8);
    image[100:300, 100:300, :] = 255;
    cv.imshow("fill_binary_demo", image);
    mask = np.ones([402, 402, 1], np.uint8);
    mask[101:301, 101:301]  = 0;
    cv.floodFill(image, mask, (200,202), (0, 0 ,140), cv.FLOODFILL_MASK_ONLY);
    cv.imshow("fill_binary", image);

floodFill()函数:

floodFill函数详解

[openv.org的解释](https://docs.opencv.org/4.1.0/d7/d1b/group__imgproc__misc.html#ga366aae45a6c1289b341d140839f18717)

这个函数有2个版本,我们关注有掩膜的那个版本。
我们重点强调一下,mask的大小要设置为(height+1, width+1);且Since the mask is larger than the filled image, a pixel (x,y) in image corresponds to the pixel (x+1,y+1) in the mask.
在这里插入图片描述

针对上述两代代码的详细分析:

  • 首先,两段代码都有mask参数,但是泛洪填充不能跨越输入掩码中的非零像素。所以在第一段代码时,我们设置了cv.FLOODFILL_FIXED_RANGE参数—(泛洪的范围时浮动的),且将mask设置为全0,所以可以对整个图片进行泛洪填充;
  • 在第二段代码时,我们设置cv.FLOODFILL_MASK_ONLY(—不会对图像有更改仅使用给定的值填充mask),将mask的对应部分设置为0(将要进行泛洪的地方设置为0),剩余部分设置为1。
  • 由此可以知道,mask的初始化和cv.FLOODFILL_MASK_ONLY/cv.FLOODFILL_FIXED_RANGE是一一对应的关系。
<think>好的,用户现在问的是关于Python-OpenCV人脸数据存储的问题。首先,我需要回想一下之前用户的问题历史。之前他们问过LBPH识别器的位置,现在可能是在实际使用OpenCV进行人脸识别项目时,遇到了数据存储的问题。接下来,我需要明确用户的需求,他们可能想知道如何将采集到的人脸数据保存下来,以便后续训练模型或者进行识别。 首先,用户可能已经掌握了使用OpenCV进行人脸检测和识别的基本方法,现在需要将检测到的人脸数据存储起来。常见的存储方式可能有图像文件、视频流、数据库或者序列化文件等。我需要逐一分析这些方法的优缺点和实现步骤。 接下来,用户可能的需求包括:如何保存单张人脸图片、如何连续保存多张图片形成数据集、如何存储到数据库方便管理,以及如何高效存储为二进制文件。这些都是实际项目中常见的需求。 然后,我需要考虑用户可能的背景。他们可能是学生、开发者,或者在进行一个人脸识别的小项目。如果是初学者,可能需要详细的代码示例和步骤说明。如果有一定经验,可能需要更高效的存储方法,比如使用数据库或二进制文件。 另外,需要注意用户可能遇到的问题,比如存储路径的设置、文件命名避免重复、数据库连接问题,以及处理大文件时的内存管理。在回答时应该给出常见问题排查,帮助他们避免常见的坑。 还需要检查之前的回答是否提到过相关的内容。之前介绍了LBPH识别器的使用方法,现在数据存储是之配套的步骤,因此需要保持一致性,比如使用相同的库和工具。 最后,要确保回答结构清晰,分点说明不同的存储方式,每种方式都有示例代码和注意事项,这样用户可以根据自己的需求选择合适的方法。同时,强调数据预处理的重要性,比如调整图片大小和灰度化,以确保存储的数据质量。</think>在Python-OpenCV中进行人脸数据存储时,主要涉及人脸特征数据和原始图像数据的保存。以下是完整的实现方法技术细节: --- ### **一、基础存储方式** #### 1. **原始图像存储** **适用场景**:人脸样本采集阶段 ```python import cv2 # 人脸检测器初始化 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # 摄像头捕获 cap = cv2.VideoCapture(0) count = 0 while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 2) face_roi = gray[y:y+h, x:x+w] # 保存人脸区域 cv2.imwrite(f'dataset/user_{count}.jpg', face_roi) count += 1 cv2.imshow('Capture', frame) if cv2.waitKey(1) == 27 or count >= 100: # 按ESC或收集100张后退出 break cap.release() cv2.destroyAllWindows() ``` #### 2. **视频流存储** ```python # 创建视频写入对象 fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('face_data.avi', fourcc, 20.0, (640,480)) while cap.isOpened(): ret, frame = cap.read() if ret: out.write(frame) else: break ``` --- ### **二、结构化数据存储** #### 1. **CSV文件存储** **适用场景**:特征向量标签关联存储 ```python import pandas as pd # 人脸特征向量示例 features = [[0.12, 0.45, ..., 0.78], # 单样本特征 [0.23, 0.56, ..., 0.89]] labels = [0, 1] # 对应标签 df = pd.DataFrame({'label': labels, 'features': features}) df.to_csv('face_features.csv', index=False) ``` #### 2. **SQLite数据库存储** ```python import sqlite3 conn = sqlite3.connect('face_data.db') c = conn.cursor() # 建表语句 c.execute('''CREATE TABLE IF NOT EXISTS faces (id INTEGER PRIMARY KEY, label INTEGER, feature BLOB, timestamp DATETIME)''') # 插入人脸数据 face_blob = cv2.imencode('.jpg', face_img)[1].tobytes() c.execute("INSERT INTO faces (label, feature) VALUES (?, ?)", (1, face_blob)) conn.commit() ``` --- ### **三、高级存储方案** #### 1. **HDF5格式存储** ```python import h5py with h5py.File('face_data.h5', 'w') as f: # 创建数据集 dset_features = f.create_dataset("features", (100,128), dtype='float32') dset_labels = f.create_dataset("labels", (100,), dtype='int32') # 填充数据 dset_features[:] = np.array(features) dset_labels[:] = labels ``` #### 2. **Numpy二进制存储** ```python np.savez_compressed('face_data.npz', features=np.array(features), labels=np.array(labels)) ``` --- ### **四、识别器的整合** #### LBPH识别器数据保存 ```python # 训练完成后保存模型 recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.train(faces, labels) recognizer.save('lbph_model.yml') # 加载模型 recognizer.read('lbph_model.yml') ``` --- ### **关键注意事项** 1. **数据预处理规范**: - 统一图像尺寸:`cv2.resize(face_roi, (200,200))` - 直方图均衡化:`cv2.equalizeHist(gray)` - 标准化处理:`face_img = face_img / 255.0` 2. **存储优化技巧**: - 使用`cv2.imencode()`+二进制存储减少空间占用 - 采用增量写入模式避免内存溢出 - 对大数据集使用分块存储策略 3. **安全防护**: ```python # 敏感数据加密示例 from cryptography.fernet import Fernet cipher = Fernet(key) encrypted_data = cipher.encrypt(face_blob) ``` --- ### **常见问题排查** | 问题现象 | 解决方案 | |---------|---------| | `imwrite`保存失败 | 检查路径权限/创建目标目录 | | 数据库写入缓慢 | 启用事务批量提交 | | HDF5文件损坏 | 使用`h5py.File`的`libver='latest'`参数 | | 特征维度不匹配 | 统一使用`cv2.resize()`标准化尺寸 | 通过以上方法,可以实现从基础到专业级的人脸数据存储方案。实际部署时建议结合`SQLAlchemy`+`HDF5`构建混合存储架构,兼顾查询效率和存储密度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值