pytorch
种豆得瓜er
这个作者很懒,什么都没留下…
展开
-
pytorch冻结模型的权重,不反向传播
以下是一个简单的示例代码,展示如何固定模型权重并不进行反向传播,只对最后一层全连接层的权重进行更新。进行前向计算,只有最后一层全连接层的参数需要更新,因此只对这一层的参数进行了反向传播和优化。通过以上步骤,即可冻结模型权重,只对需要更新的参数进行优化。的参数进行优化,以避免对不需要更新的参数进行无效的计算。4.在进行训练时,只对需要更新的参数进行反向传播和优化。为例,表示只对模型中最后一层全连接层的参数进行更新。3.在训练过程中,将需要更新的参数传入优化器中。2.对于需要更新的参数,将其。原创 2023-04-07 17:28:16 · 2408 阅读 · 0 评论 -
tensorboardX的使用
tensorboardX的使用原创 2022-10-16 15:51:12 · 372 阅读 · 0 评论 -
numpy和pytorch的版本对应关系
numpy和pytorch的版本对应关系原创 2022-07-22 10:40:55 · 15828 阅读 · 0 评论 -
ubuntu清除cuda缓存
ubuntu清除cuda缓存原创 2022-07-16 20:36:45 · 1412 阅读 · 0 评论 -
pytorch 的Conv2d的详细解释
pytorch 的Conv2d的详细解释原创 2022-06-28 19:51:26 · 723 阅读 · 0 评论 -
visdom画多条动态损失曲线
visdom画多条动态损失曲线原创 2022-06-22 19:42:04 · 525 阅读 · 0 评论 -
pytorch中文教程中人脸检测的代码更正
pytorch中文教程中,有人脸识别的代码,其中有过期函数1.numpy的函数过时的函数,如何替换#过期函数 as_matrix()#landmarks = landmarks_frame.iloc[n, 1:].as_matrix()正确函数landmarks = landmarks_frame.iloc[n, 1:].to_numpy()我们将在 __init__ 中读取csv的文件内容,在 __getitem__ 中读取图片。这么做是为了节省内存 空间。只有在需要用到图原创 2022-02-25 19:23:10 · 621 阅读 · 0 评论 -
pytorch切片
1.生成一个tensor,方法有两种,1是使用numpy生成一个nudarry的矩阵,然后转成tensor.方法2是直接使用torch.tensor()函数切片1.a[:,0:1],表示将每个矩阵的第0行的所有列切下来2.表示将每一个矩阵的每一行的第0列切下,不包含第1列...原创 2022-03-19 14:45:23 · 3307 阅读 · 0 评论 -
手动安装pycocotools
手动安装pycocotools原创 2022-02-25 19:18:45 · 2825 阅读 · 0 评论 -
pytorch 的nn.Softmax(dim=1)
nn.Softmax(dim=0)是每一列和为1.nn.Softmax(dim=1)是每一行和为1.nn.Softmax(dim) 的理解 - 简书 使用pytorch框架进行神经网络训练时,涉及到分类问题,就需要使用softmax函数,这里以二分类为例,介绍nn.Softmax()函数中,参数的含义。 1. 新建一个2x2大小的张量,一行理解成一个样本经过前面网络计算后的输出(1x2),则batch_size是2。 import numpy as np import torch impor原创 2022-02-21 20:15:23 · 3298 阅读 · 0 评论 -
deep-learning with python的猫狗识别模型,计算过程
卷积神将网络的计算公式为:N=(W-F+2P)/S+1其中N:输出大小W:输入大小F:卷积核大小P:填充值的大小S:步长大小conv2d_1输入[150,150,3] 输出[148,148,32] 卷积核大小为[3,3,32]148=[150-3+2P]/S+1 解的S=1,P=0Max_pool2d_1 卷积核大小为[2,2,32]输入[148,148,32]池化层输出[74,74,32]74=[148-2+2P]/S+1 解的步长S=2,填充P=0conv2d_2原创 2022-02-21 17:07:16 · 843 阅读 · 0 评论 -
pytorch自动求导
1.params = torch.tensor([1.0, 0.0], requires_grad=True)注意到了张量构造函数的 require_grad = True 吗?这个参数告诉PyTorch需要追踪在 params 上进行运算而产生的所有张量。换句话说,任何以 params 为祖先的张量都可以访问从 params 到该张量所调用的函数链。如果这些函数是可微的(大多数PyTorch张量运算都是可微的),则导数的值将自动存储在参数张量的 grad 属性中。你可以将包含任意数量的张量的原创 2022-02-13 14:06:36 · 1351 阅读 · 0 评论 -
关于pytorch和keras的Model类之间的区别
最近在看keras代码,然后想用pytorch复现,虽然在数据处理方面却别很小,但是在类之间的区别还是比较大的,比如from keras import modelslayer_outputs = [layer.output for layer in model.layers[:8]]activation_model = models.Model(inputs=model.input, outputs=layer_outputs)如果转成pytorch类的代码就不好转,因为要知道keras的mo原创 2022-02-09 23:48:28 · 1355 阅读 · 2 评论 -
pytorch遇到的坑(1) UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyT
/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:134: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_sch原创 2022-01-16 23:55:33 · 19639 阅读 · 5 评论 -
怎么判断GPU能否正常使用
原创 2021-12-12 22:33:35 · 1525 阅读 · 0 评论 -
安装pytorch遇到的坑
没有关闭VPN,遇到以下问题ValueError: check_hostname requires server_hostname第二个问题,引入numpy核心模块失败,所以要安装numpy.ImportError: numpy.core.multiarray failed to import原创 2021-11-18 22:53:27 · 1008 阅读 · 0 评论