pytorch冻结模型的权重,不反向传播

pytorch冻结模型权重,不进行梯度反向传播

在 PyTorch 中冻结模型权重,不进行梯度反向传播,可以通过以下几个步骤实现:

  1. 将模型的所有参数设置为不需要梯度更新,即设置 requires_grad 属性为 False

pythonCopy code

for param in model.parameters(): 
    param.requires_grad = False

2.对于需要更新的参数,将其 requires_grad 属性设置为 True

pythonCopy code

for param in model.fc.parameters(): param.requires_grad = True

这里以 model.fc 为例,表示只对模型中最后一层全连接层的参数进行更新。

3.在训练过程中,将需要更新的参数传入优化器中。

pythonCopy code

optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)

在这里使用了 filter 函数,只选择 requires_grad=True 的参数进行优化,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

种豆得瓜er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值