关于深度学习神经网络模型训练,参数过大,导致显卡内存溢出问题的总结

本文探讨了在使用CIFAR10模型进行深度学习时遇到的显卡内存溢出问题。通过计算模型参数大小和内存需求,作者指出即使减小批量大小和输入层样本数量,仍可能需要超过28GB的显存。文章提到了过拟合迹象,并提出了调整batch size和减少输入样本作为解决方案。
摘要由CSDN通过智能技术生成

实验是利用CIFAR10模型,计算将图片分成10个分类的误差。一开始采用cpu模型来训练,迭代一个epoch需要50分钟,所以换成GPU模型,GPU有4G内存,结果刚加载模型显卡内存就溢出。

报错如下:

先用keras来计算网络的大小,参数的个数。

(50000, 32, 32, 3) (50000,) (10000, 32, 32, 3) (10000,)
sample: (512, 32, 32, 3) (512,) tf.Tensor(-1.0, shape=(), dtype=float32) tf.Tensor(1.0, shape=(), dtype=float32)
Model: "res_net_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
sequ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

种豆得瓜er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值