机器学习第二周笔记
1.1单变量回归问题和模型表示
根据之前的数据预测出一个准确的输出值。比如更具已有的房价数据,预测出1250(平方英尺)的防止对应的房价是220K左右。‘
-
上图既是一个监督学习算法的方式:h表示一个函数,输入值是房屋尺寸大小。h通过输入的x值来得出y值。y则对应房子价格。(h即为一个从x到y的映射)
-
因为只含有一个特征/输入变量,则可能的表达式为:
这种问题也叫做单变量线性回归问题。
1.2代价函数
在建模时参数选择的目标:选择出使 建模误差的平方和 最小的模型参数。等价于求出使代价函数最小的时候的参数值。
-
建模误差:模型预测值和训练集中实际值之间的差距。
-
代价函数(平方误差函数/平方误差代价函数):
求出代价函数的最小值,则对应最小的θ0,θ1即为表达式的两个参数,这时候模型误差最小。
1.3梯度下降
用于求函数最小值的算法。可用于求代价函数的最小值。
-
梯度下降的图示:
方法描述:假设站在山的最高点,环顾四周,