机器学习第二周笔记


1.1单变量回归问题和模型表示

根据之前的数据预测出一个准确的输出值。比如更具已有的房价数据,预测出1250(平方英尺)的防止对应的房价是220K左右。‘
在这里插入图片描述

大灯打

  • 上图既是一个监督学习算法的方式:h表示一个函数,输入值是房屋尺寸大小。h通过输入的x值来得出y值。y则对应房子价格。(h即为一个从x到y的映射)

  • 因为只含有一个特征/输入变量,则可能的表达式为:
    在这里插入图片描述
    这种问题也叫做单变量线性回归问题。


1.2代价函数

在建模时参数选择的目标:选择出使 建模误差的平方和 最小的模型参数。等价于求出使代价函数最小的时候的参数值。

  • 建模误差:模型预测值和训练集中实际值之间的差距。在这里插入图片描述

  • 代价函数(平方误差函数/平方误差代价函数):在这里插入图片描述
    求出代价函数的最小值,则对应最小的θ0,θ1即为表达式的两个参数,这时候模型误差最小。


1.3梯度下降

用于求函数最小值的算法。可用于求代价函数的最小值。

  • 梯度下降的图示:在这里插入图片描述
    方法描述:假设站在山的最高点,环顾四周,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿tu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值