读书笔记:Node Dependent Local Smoothing for Scalable Graph Learning

读书笔记:Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning1

动机与贡献

现有的图神经网络在信息聚合的过程中,信息聚合使用的邻居阶数对于所有的节点都是相同的。然而,由于局部结构存在着差异。如图1所示,左边的节点和右边的节点都聚合二阶的邻居信息。但是,左边的红色节点聚合二阶的邻居信息可能会导致过平滑,右边的红色节点聚合二阶的邻居信息可能会导致欠平滑。那么,如何针对每个节点找到适合的邻居阶数进行信息聚合,达到较好的学习效果。
图1

图 1

文中提出了一种简单的解决方案,对于每个节点计算特定的迭代次数,即在信息传播时使用的邻居的阶数。计算出最小的迭代次数,那么在该范围内的邻居都会作为信息聚合时所使用的邻居。这样可以有效地防止过平滑和欠平滑。

模型与方法

首先,传统的GCN层可以由公式1表示。可以看到,若权重矩阵W和为单位矩阵,激活函数为单位函数,并且堆叠多层GCN层的话,X的特征可以表达为公式2所示。那么,过平滑的问题就和k有关。当k过大时,就会过平滑。不妨考虑极端情况,k趋于无穷大,如公式3所示。那么,最大的问题就是找到适当的k,防止过平滑。
X ( k + 1 ) = δ ( A ^ X ( k ) W ( k ) ) , A ^ = D ~ r − 1 A ~ D ~ − r (1) \mathbf{X}^{(k+1)}=\delta\left(\hat{\mathbf{A}} \mathbf{X}^{(k)} \mathbf{W}^{(k)}\right), \quad \hat{\mathbf{A}}=\widetilde{\mathbf{D}}^{r-1} \tilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-r}\tag{1} X(k+1)=δ(A^X(k)W(k)),A^=D r1A~D r(1)

X ( k ) = A ^ k X (2) \mathbf{X}^{(k)}=\hat{\mathbf{A}}^{k} \mathbf{X}\tag{2} X(k)=A^kX(2)

X ( ∞ ) = A ^ ∞ X , A ^ i , j ∞ = ( d i + 1 ) r ( d j + 1 ) 1 − r 2 m + n (3) \mathbf{X}^{(\infty)}=\hat{\mathbf{A}}^{\infty} \mathbf{X}, \quad \hat{\mathbf{A}}_{i, j}^{\infty}=\frac{\left(d_{i}+1\right)^{r}\left(d_{j}+1\right)^{1-r}}{2 m+n}\tag{3} X()=A^X,A^i,j=2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值