透视变形

Ps菜单:编辑/透视变形

Edit/Perspective Warp

使用不同相机距离和视角拍摄的同一对象的图像会呈现不同的透视扭曲。

透视变形 Perspective Warp命令不仅可以轻松调整图像透视,尤其对于那些包含直线或平面的图像(例如建筑物等),也可用于手动创建透视效果。

提示:

须开启“首选项/性能/使用图形处理器”才能使用此命令。

  • 一般步骤及说明

1、建议先将图层转换为智能对象。

2、建立参考线。

在画面中需要做到“横平竖直”的附近位置添加参考线。

提示:

在后续的操作过程仍可根据实质情况添加参考线。

44b79be95c42318a524151e67a88c3db.png

3、定义平面。

执行Ps菜单:编辑/透视变形,第一步是在版面 Layout模式下定义平面。

可在同一画面中编辑不同的透视,即定义多个平面。

对于常规的镜头校正,建议围绕主体绘制一个四边形平面,以便画面整体变形。

64e27f215a583c95aeec5c30bf2bc5c0.png

说明:

一般情况下,定义平面时应使得网格线对齐或平行于应该“横平竖直”的位置,以便使用变形模式下的三个自动调整按钮进行调整。

也可以在这一步仅绘制一个或多个平面,后续借助参考线等手动调整。

4、操控变形。

在版面模式下,按 Enter 键即可切换到变形 Warp模式。

或者点击工具选项栏上的“变形”按钮。

通过移动四边形的角点(图钉),以达到校正或创建透视的效果。

31af863d7217da1cfaee2a5c4f07ad1a.png

操作提示:

(1)自动调整按钮。

如果前面已根据画面结构绘制平面,可点击这些按钮进行自动调整。

c5a4272d62e23d7bd67beb2d48e1dc3d.png

自动拉直接近垂直的线段

Automatically straighten near vertical lines

自动拉平接近水平的线段

Automatically straighten near horizontal lines

自动水平和垂直变形

Auto warp to horizontal and vertical 

(2)水平或垂直约束。

按住 Shift 键单击某条边线,将会使得这条线约束为水平线或垂直线,并显示为黄色。

再次按住 Shift 键并单击该边线可解除约束。

(3)其它技巧。

使用光标键可轻微移动选中的角点(图钉)。

按 H 键可隐藏或显示网格线。

按 L 键可切换到版面模式,按 W 键切换到变形模式。

  • 补充说明

1、使用智能对象的好处是,可以多次对透视变形(智能滤镜)进行调整修改。

2、透视变形完成后,由于整体发生了扭曲变形,通常需要裁剪画面或者进行内容识别填充。

58985b7ed9df1fce624513c2080d3dee.png

“有钱的捧个钱场,好看的点下在看”

<think>好的,我现在需要处理用户关于Python图像校正算法分类的问题。首先,我得理解用户的需求。用户之前已经询问过图像校正算法的分类,现在可能希望得到更详细的信息,或者相关的扩展内容。根据用户提供的引用内容,特别是引用[2],里面提到了图像倾斜校正的MATLAB实现,但用户现在关心的是Python中的算法分类。我需要将MATLAB相关的信息转换为Python的实现,同时结合其他引用内容中的算法,比如直方图均衡化、拉普拉斯算子等,但可能这些更多属于图像增强而非校正。 首先,我需要明确图像校正和图像增强的区别。图像校正通常指纠正图像中的几何失真,比如倾斜、透视变形、镜头畸变等,而图像增强更多是改善视觉效果,比如对比度调整、去噪等。根据引用[2],用户提到的倾斜校正属于几何校正的一部分,所以应该围绕几何校正来分类。 接下来,我应该将图像校正算法按照不同的几何问题来分类。例如,倾斜校正、透视校正、镜头畸变校正等。对于倾斜校正,常用的方法有霍夫变换检测直线角度,然后进行旋转矫正。透视校正可能需要使用特征点检测,比如SIFT或SURF,然后计算单应性矩阵进行变换。镜头畸变校正通常需要相机标定,使用张正友标定法获取畸变参数,然后应用反向映射。 此外,用户提到的引用中还有CLAHE、Retinex等算法,这些属于图像增强,可能在预处理阶段使用,但严格来说不属于校正。不过,如果用户想了解更广泛的校正流程,可能包括这些增强步骤作为预处理的一部分,但需要明确指出它们的分类。 然后,我需要考虑如何用Python实现这些校正算法。例如,使用OpenCV库中的函数,如HoughLinesP检测倾斜,warpAffine进行旋转矫正,findHomography和warpPerspective用于透视校正,undistort用于镜头畸变校正。同时,可能需要结合numpy进行矩阵运算。 用户还可能关心算法选择的依据,比如不同方法的适用场景、计算复杂度、精度等。例如,霍夫变换适合有明显直线结构的图像,而特征点方法适合有丰富特征的场景。镜头畸变校正需要已知相机参数,可能不适用于所有情况。 另外,需要检查是否有遗漏的校正类型,比如仿射变换、相似变换等,是否属于不同的分类。同时,是否需要提到基于深度学习的校正方法,虽然传统方法更常见,但深度学习在某些情况下也有应用,比如使用CNN进行端到端的校正。 最后,确保回答结构清晰,分点列出分类,每个类别下说明方法、原理和Python实现的相关函数,可能还需要示例代码片段。同时,生成的相关问题需要围绕分类、方法比较、实现步骤、应用案例等,帮助用户进一步探索。</think>### Python图像校正算法分类及实现解析 图像校正算法根据几何失真类型可分为以下四类,核心原理是通过空间变换矩阵恢复图像几何特性: #### 一、倾斜校正(Rotation Correction) 1. **霍夫变换法** 通过检测图像中的直线角度计算倾斜量,使用旋转矩阵进行校正 ```python import cv2 def hough_correction(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150) lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=100, maxLineGap=10) # 计算平均角度后进行旋转校正 return cv2.warpAffine(img, M, (w, h)) ``` 2. **投影轮廓法** 分析垂直/水平投影直方图的波峰分布特征确定倾斜角度[^2] #### 二、透视校正(Perspective Correction) 适用于文档/车牌等平面物体拍摄变形 $$ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} $$ 使用特征点匹配计算单应性矩阵$H$: ```python orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(img1, None) H, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC) dst = cv2.warpPerspective(img, H, (width, height)) ``` #### 三、镜头畸变校正(Lens Distortion) 通过标定板获取畸变系数: $$ x_{corrected} = x(1 + k_1r^2 + k_2r^4) + 2p_1xy + p_2(r^2+2x^2) $$ ```python ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) undistorted = cv2.undistort(img, mtx, dist, None, mtx) ``` #### 四、非线性形变校正 1. **薄板样条插值法** 通过控制点建立形变映射函数 2. **弹性形变模型** 模拟物理变形特性进行逆向变换
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值