Camera Raw:首选项 - 性能

Camera Raw 首选项中的性能 Performance选项卡可以根据自己的硬件配置和工作需求,优化 Camera Raw 的性能,以获得更流畅的图像处理体验。

09d439b445cd099243f901800090f751.png

性能

Performance

使用图形处理器

Use Graphic Processor

选择是否以及如何使用 GPU(图形处理器)来加速图像处理。

--自动

Auto

默认选项。由软件自动决定是否使用 GPU 以及如何使用 GPU。

--自定义

Custom

可以手动配置 GPU 的使用方式。

选择“自定义”之后,会显示以下两个选项:

为图像处理使用 GPU

Use GPU for image processing

启用后,GPU 将用于图像处理过程中的计算任务,加速处理速度。

使用 GPU 打开与保存

Use GPU for Open and Save

启用后,GPU 将用于加速图像的打开和保存操作,提高这些操作的速度。

说明:

1、Camera Raw 当前还不支持使用多个图形处理器。使用多个 GPU 不会增强性能。

2、在虚拟机上运行的 GPU 未经测试或不受支持。

3、首次打开 Camera Raw 时,会运行 GPU 测试。如果测试失败,GPU 会被禁用,即使 GPU 满足最低要求。某些 GPU 虽然满足最低要求,但可能始终无法与 Camera Raw 兼容,因而也无法实现图形加速。

Camera Raw 高速缓存

Camera Raw Cache

Camera Raw 高速缓存通过存储图像的缩略图、元数据和文件信息,加快在 Adobe Bridge 和 Camera Raw 中查看和处理图像的速度。

当用户在 Adobe Bridge 中浏览文件夹时,缓存可以立即提供缩略图和预览图像,减少载入时间。

在 Camera Raw 中,缓存缩短了打开图像和更改图像设置时的处理时间。

最大大小

Maximum Size

设置 Camera Raw 高速缓存的最大容量。

可以根据系统的可用空间和性能需求调整此值。

建议 8 ~ 10 GB。

清空高速缓存

Purge Cache

手动清空高速缓存,释放存储空间。

定期清理缓存以防止缓存损坏或数据陈旧,有助于保持系统的运行效率。

选择位置

Select Location

指定高速缓存的存储路径。

默认路径是系统的用户目录下的特定文件夹,用户可以根据需要更改这个路径。

c3699f3890a6090ccde0bd0e449b29f3.jpeg

“点赞有美意,赞赏是鼓励”

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值