Python零基础投喂(Pandas预备知识)

1.1 Python 基础

1.1.1 列表推导式与条件赋值

# 在生成一个数字序列的时候,在 Python 中可以如下写出:
L = []
def my_func(x):
    return 2+x
for i in range(5):
    L.append(my_func(i))
L
[2, 3, 4, 5, 6]
#事实上可以利用列表推导式进行写法上的简化:[* for i in *] 。其中,第一个 * 为映射函数,其输入为后面 i
#指代的内容,第二个 * 表示迭代的对象。
[my_func(i) for i in range(5)]
[2, 3, 4, 5, 6]
# 列表表达式还支持多层嵌套,如下面的例子中第一个 for 为外层循环,第二个为内层循环:
[m+'_'+n for m in ['a','b'] for n in ['c','d']]
['a_c', 'a_d', 'b_c', 'b_d']
# 除了列表推导式,另一个实用的语法糖是条件赋值,其形式为 value = a if condition else b
value = 'cat' if 2>1 else 'dog'
value
'cat'
a,b='cat','dog'
condition = 2>1
if condition:
    value=a
else:
    value=b
value
'cat'
L=[1,2,3,4,5,6,7]
[i if i<=5 else 5 for i in L]
[1, 2, 3, 4, 5, 5, 5]

1.1.2 匿名函数与 map 方法

# 有一些函数的定义具有清晰简单的映射关系,例如上面的 my_func 函数,这时候可以用匿名函数的方法简
# 洁地表示:
# map() 会根据提供的函数对指定序列做映射。
# 第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。
my_func=lambda x:2+x
print(my_func(3))

multi_para_func=lambda a,b:a+b
multi_para_func(1,2)
5





3
# 但上面的用法其实违背了“匿名”的含义,事实上它往往在无需多处调用的场合进行使用,例如上面列表推
# 导式中的例子,用户不关心函数的名字,只关心这种映射的关系:
[(lambda x:2+x)(i) for i in range(5)]
[2, 3, 4, 5, 6]
# 对于上述的这种列表推导式的匿名函数映射,Python 中提供了 map 函数来完成,它返回的是一个 map 对象,需要通过 list 转为列表:
list(map(lambda x:2+x,range(5)))
[2, 3, 4, 5, 6]
# 对于多个输入值的函数映射,可以通过追加迭代对象实现:
list(map(lambda x,y:str(x)+'_'+y,range(5),list('abcde')))
['0_a', '1_b', '2_c', '3_d', '4_e']

1.1.3 zip 对象与 enumerate 方法

# zip 函数能够把多个可迭代对象打包成一个元组构成的可迭代对象,它返回了一个 zip 对象,通过 tuple, list
# 可以得到相应的打包结果:
l1,l2,l3=list('abc'),list('def'),list('hij')
list(zip(l1,l2,l3))
[('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j')]
tuple(zip(l1,l2,l3))
(('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j'))
# 往往会在循环迭代的时候使用到 zip 函数:
for i,j,k in zip(l1,l2,l3):
    print(i,j,k)
a d h
b e i
c f j
# enumerate 是一种特殊的打包,它可以在迭代时绑定迭代元素的遍历序号:
l=list('abcd')
for index,value in enumerate(l):
    print(index,value)
0 a
1 b
2 c
3 d
# 用 zip 对象也能够简单地实现这个功能:
for index,value in zip(range(len(l)),l):
    print(index,value)
0 a
1 b
2 c
3 d
for index in range(len(l)):
    print(index)
0
1
2
3
for index in list(l):
    print(index)
a
b
c
d
#当需要对两个列表建立字典映射时,可以利用 zip 对象
dict(zip(l1,l2))
{'a': 'd', 'b': 'e', 'c': 'f'}
# 既然有了压缩函数,那么 Python 也提供了 * 操作符和 zip 联合使用来进行解压操作:
zipped = list(zip(l1,l2,l3))
zipped
[('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j')]
list(zip(*zipped))
[('a', 'b', 'c'), ('d', 'e', 'f'), ('h', 'i', 'j')]

1.2 Numpy 基础

1.2.1 np 数组的构造

# 最一般的方法是通过 array 来构造:
import numpy as np
np.array([1,2,3])
array([1, 2, 3])
#下面讨论一些特殊数组的生成方式:
# 【a】等差序列:np.linspace, np.arange
np.linspace(1,5,11) # 起始、终止(包含)、样本个数
array([1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4, 3.8, 4.2, 4.6, 5. ])
np.arange(1,5,2) # 起始、终止(不包含)、步长
array([1, 3])
# 【b】特殊矩阵:zeros, eye, full
np.zeros((2,3)) # 传入元组表示各维度大小
array([[0., 0., 0.],
       [0., 0., 0.]])
np.eye(3) # 3*3 的单位矩阵
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
np.eye(3,k=1) # 偏移主对角线 1 个单位的伪单位矩阵
array([[0., 1., 0.],
       [0., 0., 1.],
       [0., 0., 0.]])
np.full((2,3),10) # 元组传入大小,10 表示填充数值
array([[10, 10, 10],
       [10, 10, 10]])
np.full((2,3),[1,2,3])
array([[1, 2, 3],
       [1, 2, 3]])
#【c】随机矩阵:np.random
#最常用的随机生成函数为 rand, randn, randint, choice ,它们分别表示 0-1 均匀分布的随机数组、标准正态
#的随机数组、随机整数组和随机列表抽样:
np.random.rand(3) # 生成服从 0-1 均匀分布的三个随机数
array([0.05150622, 0.12623442, 0.05012188])
np.random.rand(3,3) # 注意这里传入的不是元组,每个维度大小分开输入
array([[0.49889527, 0.79718226, 0.9787408 ],
       [0.22907704, 0.63938829, 0.88717653],
       [0.98590688, 0.27542163, 0.84398524]])
# 对于服从区间 a 到 b 上的均匀分布可以如下生成:
a,b=5,15
(b-a)*np.random.rand(3)+a
array([ 8.94476537,  6.69380248, 10.53014755])
# randn 生成了 N(0, I) 的标准正态分布:
np.random.randn(3)
array([ 0.67401196, -0.61472109,  1.09121873])
np.random.randn(2,2)
array([[ 0.6208236 ,  0.64515623],
       [-0.59163504, -0.32420474]])
#对于服从方差为 σ2 均值为 µ 的一元正态分布可以如下生成:
sigma,mu=2.5,3
mu+np.random.randn(3)*sigma
array([-0.56333074,  4.77478195,  7.04589299])
# randint 可以指定生成随机整数的最小值最大值和维度大小:
low,high,size=5,15,(2,2)
np.random.randint(low,high,size)
array([[ 7, 11],
       [ 5, 11]])
# choice 可以从给定的列表中,以一定概率和方式抽取结果,当不指定概率时为均匀采样,默认抽取方式为有放回抽样:
my_list=['a','b','c','d']
np.random.choice(my_list,2,replace=False,p=[0.1,0.7,0.1,0.1])
array(['b', 'd'], dtype='<U1')
np.random.choice(my_list,(3,3))
array([['b', 'a', 'b'],
       ['a', 'd', 'a'],
       ['a', 'b', 'c']], dtype='<U1')
# 当返回的元素个数与原列表相同时,等价于使用 permutation 函数,即打散原列表
np.random.permutation(my_list)
array(['a', 'b', 'd', 'c'], dtype='<U1')
# 最后,需要提到的是随机种子,它能够固定随机数的输出结果:
np.random.seed(0)
np.random.rand()
0.5488135039273248
np.random.seed(0)
np.random.rand()
0.5488135039273248

1.2.2 np 数组的变形与合并

#【a】转置:T
np.zeros((2,3)).T
array([[0., 0.],
       [0., 0.],
       [0., 0.]])
np.zeros((2,3))
array([[0., 0., 0.],
       [0., 0., 0.]])
#【b】合并操作:r_, c_
# 对于二维数组而言,r_ 和 c_ 分别表示上下合并和左右合并:
np.r_[np.zeros((2,3)),np.zeros((2,3))]
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
np.c_[np.zeros((2,3)),np.zeros((2,3))]
array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]])
# 一维数组和二维数组进行合并时,应当把其视作列向量,在长度匹配的情况下只能够使用左右合并的 c_ 操作:
np.zeros(2)
array([0., 0.])
np.array([0,0])
array([0, 0])
np.r_[np.array([0,0]),np.zeros(2)]
array([0., 0., 0., 0.])
print(np.array([0,0]))
print(np.zeros((2,3)))
np.c_[np.array([0,0]),np.zeros((2,3))]
[0 0]
[[0. 0. 0.]
 [0. 0. 0.]]





array([[0., 0., 0., 0.],
       [0., 0., 0., 0.]])
#【c】维度变换:reshape
# reshape 能够帮助用户把原数组按照新的维度重新排列。在使用时有两种模式,分别为 C 模式和 F 模式,分
# 别以逐行和逐列的顺序进行填充读取。
target=np.arange(8).reshape(2,4)
target
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
target.reshape((4,2),order='C')# 按照行读取和填充
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])
target.reshape((4,2),order='F')
array([[0, 2],
       [4, 6],
       [1, 3],
       [5, 7]])
# 特别地,由于被调用数组的大小是确定的,reshape 允许有一个维度存在空缺,此时只需填充-1 即可:
target.reshape((4,-1))
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])
# 下面将 n*1 大小的数组转为 1 维数组的操作是经常使用的:
target=np.ones((3,1))
target
array([[1.],
       [1.],
       [1.]])
target.reshape(-1)
array([1., 1., 1.])
# 1.2.3 np 数组的切片与索引
# 数组的切片模式支持使用 slice 类型的 start:end:step 切片,还可以直接传入列表指定某个维度的索引进行切片:
target=np.arange(9).reshape(3,3)
target
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
target[:-1,[0,2]] ## :-1,除了最后一个取全部  -1,取最后一个 ::-1取从后向前相反的元素
array([[0, 2],
       [3, 5]])
# 此外,还可以利用 np.ix_ 在对应的维度上使用布尔索引,但此时不能使用 slice 切片:
target[np.ix_([True, False, True], [True, False, True])]
array([[0, 2],
       [6, 8]])
target[np.ix_([1,2], [True, False, True])]
array([[3, 5],
       [6, 8]])
# 当数组维度为 1 维时,可以直接进行布尔索引,而无需 np.ix_ :
new=target.reshape(-1)
new
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
new[new%2==0]
array([0, 2, 4, 6, 8])

1.2.4 常用函数

#为了简单起见,这里假设下述函数输入的数组都是一维的。
#【a】where
# where 是一种条件函数,可以指定满足条件与不满足条件位置对应的填充值:
a=np.array([[-1,1,-1,0]])
a
array([[-1,  1, -1,  0]])
np.where(a>0,a,5)
array([[5, 1, 5, 5]])
#【b】nonzero, argmax, argmin
# 这三个函数返回的都是索引,nonzero 返回非零数的索引,argmax, argmin 分别返回最大和最小数的索引:
a = np.array([-2,-5,0,1,3,-1])
np.nonzero(a)
(array([0, 1, 3, 4, 5], dtype=int64),)
np.argmax(a)
4
a.argmax()
4
#【c】any, all
# any 指当序列至少 存在一个 True 或非零元素时返回 True ,否则返回 False
# all 指当序列元素 全为 True 或非零元素时返回 True ,否则返回 False
a=np.array([0,1])
print(a.any())
print(a.all())
True
False
#【d】cumprod, cumsum, diff
# cumprod, cumsum 分别表示累乘和累加函数,返回同长度的数组,diff 表示和前一个元素做差,由于第一个
# 元素为缺失值,因此在默认参数情况下,返回长度是原数组减 1
a=np.array([1,2,4])
a.cumprod()
array([1, 2, 8], dtype=int32)
a.cumsum()
array([1, 3, 7], dtype=int32)
np.diff(a)
array([1, 2])
# 【e】统计函数
# 常用的统计函数包括 max, min, mean, median, std, var, sum, quantile ,其中分位数计算是全局方法,因此不能通过 array.quantile 的方法调用:
target=np.arange(5)
target
target.max()
4
np.quantile(target,0.5) #0.5分位数
2.0
# 但是对于含有缺失值的数组,它们返回的结果也是缺失值,如果需要略过缺失值,必须使用 nan* 类型的函
# 数,上述的几个统计函数都有对应的 nan* 函数。

target=np.array([1,2,np.nan])
target
array([ 1.,  2., nan])
target.max()
nan
np.nanmax(target)
2.0
np.nanquantile(target,0.5)
1.5
# 对于协方差和相关系数分别可以利用 cov, corrcoef 如下计算:
target1=np.array([1,3,5,9])
target2=np.array([1,5,3,-9])
np.cov(target1,target2)
array([[ 11.66666667, -16.66666667],
       [-16.66666667,  38.66666667]])
np.corrcoef(target1,target2)
array([[ 1.        , -0.78470603],
       [-0.78470603,  1.        ]])
# 最后,需要说明二维 Numpy 数组中统计函数的 axis 参数,它能够进行某一个维度下的统计特征计算,当
# axis=0 时结果为列的统计指标,当 axis=1 时结果为行的统计指标:
target=np.arange(1,10).reshape(3,-1)
target
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
target.sum(0)  #列
array([12, 15, 18])
target.sum(1)  #行
array([ 6, 15, 24])
# 1.2.5 广播机制
# 广播机制用于处理两个不同维度数组之间的操作,这里只讨论不超过两维的数组广播机制。
#【a】标量和数组的操作
#当一个标量和数组进行运算时,标量会自动把大小扩充为数组大小,之后进行逐元素操作:
res=3*np.ones((2,2))+1
res
array([[4., 4.],
       [4., 4.]])
res=1/res
res
array([[0.25, 0.25],
       [0.25, 0.25]])
'''【b】二维数组之间的操作
当两个数组维度完全一致时,使用对应元素的操作,否则会报错,除非其中的某个数组的维度是 m × 1 或者
1 × n ,那么会扩充其具有 1 的维度为另一个数组对应维度的大小。例如,1 × 2 数组和 3 × 2 数组做逐元素
运算时会把第一个数组扩充为 3 × 2 ,扩充时的对应数值进行赋值。但是,需要注意的是,如果第一个数组
的维度是 1 × 3 ,那么由于在第二维上的大小不匹配且不为 1 ,此时报错。'''
res=np.ones((3,2))
res
array([[1., 1.],
       [1., 1.],
       [1., 1.]])
res*np.array([[2,3]])
array([[2., 3.],
       [2., 3.],
       [2., 3.]])
res * np.array([[2],[3],[4]])
array([[2., 2.],
       [3., 3.],
       [4., 4.]])
res * np.array([[2]])
array([[2., 2.],
       [2., 2.],
       [2., 2.]])
#【c】一维数组与二维数组的操作
#当一维数组 Ak 与二维数组 Bm,n 操作时,等价于把一维数组视作 A1,k 的二维数组,使用的广播法则与【b】
#中一致,当 k! = n 且 k, n 都不是 1 时报错。
np.ones(3)
array([1., 1., 1.])
np.ones((2,3))
array([[1., 1., 1.],
       [1., 1., 1.]])
np.ones(3) + np.ones((2,3))
array([[2., 2., 2.],
       [2., 2., 2.]])
np.ones((2,1))
array([[1.],
       [1.]])
np.ones((2,1))+np.ones(3)
array([[2., 2., 2.],
       [2., 2., 2.]])
np.ones(1)
array([1.])
np.ones(1) + np.ones((2,3))
array([[2., 2., 2.],
       [2., 2., 2.]])

1.2.6 向量与矩阵的计算

#【a】向量内积:dot
a = np.array([1,2,3])
b = np.array([1,3,5])
a.dot(b)
22
#【b】向量范数和矩阵范数:np.linalg.norm
martix_target = np.arange(4).reshape(-1,2)
martix_target
array([[0, 1],
       [2, 3]])
np.linalg.norm(martix_target, 'fro')
3.7416573867739413
np.linalg.norm(martix_target, np.inf)
5.0
np.linalg.norm(martix_target, 2)
3.702459173643833
vector_target = np.arange(4)
vector_target
array([0, 1, 2, 3])
np.linalg.norm(vector_target, np.inf)
3.0
np.linalg.norm(vector_target, 2)
3.7416573867739413
np.linalg.norm(vector_target, 3)
3.3019272488946263
#【c】矩阵乘法:@
a = np.arange(4).reshape(-1,2)
a
array([[0, 1],
       [2, 3]])
b = np.arange(-4,0).reshape(-1,2)
b
array([[-4, -3],
       [-2, -1]])
 a@b
array([[ -2,  -1],
       [-14,  -9]])

1.3 练习

1.3.1 Ex1:利用列表推导式写矩阵乘法

M1 = np.random.rand(2,3)
M2 = np.random.rand(3,4)
print(M1)
print(M2)
[[0.60484552 0.73926358 0.03918779]
 [0.28280696 0.12019656 0.2961402 ]]
[[0.11872772 0.31798318 0.41426299 0.0641475 ]
 [0.69247212 0.56660145 0.26538949 0.52324805]
 [0.09394051 0.5759465  0.9292962  0.31856895]]
M1.shape[0] #shape[0]:表示矩阵的行数
2
M2.shape[1] #shape[1]:表示矩阵的列数
4
res = np.empty((M1.shape[0],M2.shape[1]))  #2*4的矩阵
res
array([[0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
        0.00000000e+000],
       [0.00000000e+000, 7.25288368e-321, 1.24610926e-306,
        1.42410974e-306]])
for i in range(M1.shape[0]):
    for j in range(M2.shape[1]):
        item=0
        for k in range(M1.shape[1]):
            item+=M1[i][k]*M2[k][j]
        res[i][j]=item
res
array([[0.58741267, 0.63376859, 0.48317497, 0.43810157],
       [0.14462935, 0.32859231, 0.42425732, 0.17537505]])
M1@M2
array([[0.58741267, 0.63376859, 0.48317497, 0.43810157],
       [0.14462935, 0.32859231, 0.42425732, 0.17537505]])
#验证:
((M1@M2-res)<1e-15).all() #排除数值误差
True

1.3.2 Ex2:更新矩阵

#先构建A矩阵
A=np.arange(1,10).reshape(3,-1)
A
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
#计算倒数
1/A
array([[1.        , 0.5       , 0.33333333],
       [0.25      , 0.2       , 0.16666667],
       [0.14285714, 0.125     , 0.11111111]])
(1/A).sum(1)
array([1.83333333, 0.61666667, 0.37896825])
(1/A).sum(1).reshape(-1,1)
array([[1.83333333],
       [0.61666667],
       [0.37896825]])
A*((1/A).sum(1).reshape(-1,1))
array([[1.83333333, 3.66666667, 5.5       ],
       [2.46666667, 3.08333333, 3.7       ],
       [2.65277778, 3.03174603, 3.41071429]])

1.3.3 Ex3:卡方统计量

# 定义A矩阵:
np.random.seed(0)
A = np.random.randint(10, 20, (8, 5))
A
array([[15, 10, 13, 13, 17],
       [19, 13, 15, 12, 14],
       [17, 16, 18, 18, 11],
       [16, 17, 17, 18, 11],
       [15, 19, 18, 19, 14],
       [13, 10, 13, 15, 10],
       [12, 13, 18, 11, 13],
       [13, 13, 17, 10, 11]])
A.sum(0)
array([120, 111, 129, 116, 101])
A.sum(1)
array([68, 73, 80, 79, 85, 61, 67, 64])
A.sum(0)*(A.sum(1).reshape(-1,1))
array([[ 8160,  7548,  8772,  7888,  6868],
       [ 8760,  8103,  9417,  8468,  7373],
       [ 9600,  8880, 10320,  9280,  8080],
       [ 9480,  8769, 10191,  9164,  7979],
       [10200,  9435, 10965,  9860,  8585],
       [ 7320,  6771,  7869,  7076,  6161],
       [ 8040,  7437,  8643,  7772,  6767],
       [ 7680,  7104,  8256,  7424,  6464]])
B=A.sum(0)*(A.sum(1).reshape(-1,1))/A.sum()
B
array([[14.14211438, 13.08145581, 15.20277296, 13.67071057, 11.90294627],
       [15.18197574, 14.04332756, 16.32062392, 14.67590988, 12.77816291],
       [16.63778163, 15.38994801, 17.88561525, 16.08318891, 14.0034662 ],
       [16.42980936, 15.19757366, 17.66204506, 15.88214905, 13.82842288],
       [17.67764298, 16.35181976, 19.0034662 , 17.08838821, 14.87868284],
       [12.68630849, 11.73483536, 13.63778163, 12.26343154, 10.67764298],
       [13.93414211, 12.88908146, 14.97920277, 13.46967071, 11.72790295],
       [13.3102253 , 12.31195841, 14.3084922 , 12.86655113, 11.20277296]])
((A-B)**2/B).sum()
11.842696601945802

1.3.4 Ex4:改进矩阵计算的性能

np.random.seed(0)
m, n, p = 100, 80, 50
B = np.random.randint(0, 2, (m, p))
B
array([[0, 1, 1, ..., 1, 0, 1],
       [0, 1, 1, ..., 1, 1, 0],
       [1, 0, 0, ..., 1, 1, 1],
       ...,
       [1, 0, 0, ..., 1, 1, 0],
       [0, 0, 0, ..., 1, 1, 0],
       [0, 1, 1, ..., 1, 1, 1]])
U = np.random.randint(0, 2, (p, n))
U
array([[1, 0, 1, ..., 1, 1, 0],
       [0, 0, 0, ..., 0, 0, 1],
       [0, 1, 0, ..., 0, 1, 1],
       ...,
       [1, 0, 1, ..., 1, 0, 1],
       [0, 0, 1, ..., 0, 0, 0],
       [1, 1, 0, ..., 0, 0, 1]])
Z = np.random.randint(0, 2, (m, n))
Z
array([[1, 0, 0, ..., 1, 0, 0],
       [0, 1, 1, ..., 1, 1, 0],
       [1, 0, 1, ..., 0, 1, 1],
       ...,
       [0, 1, 0, ..., 1, 1, 0],
       [1, 0, 0, ..., 1, 1, 0],
       [0, 0, 0, ..., 0, 0, 1]])
B**2
array([[0, 1, 1, ..., 1, 0, 1],
       [0, 1, 1, ..., 1, 1, 0],
       [1, 0, 0, ..., 1, 1, 1],
       ...,
       [1, 0, 0, ..., 1, 1, 0],
       [0, 0, 0, ..., 1, 1, 0],
       [0, 1, 1, ..., 1, 1, 1]], dtype=int32)
B1=(B**2).sum(1).reshape(-1,1).T
B1
array([[30, 26, 26, 19, 23, 28, 32, 28, 27, 23, 21, 27, 25, 28, 26, 22,
        27, 27, 24, 15, 21, 25, 24, 26, 22, 29, 27, 31, 30, 25, 27, 25,
        27, 24, 25, 24, 21, 28, 25, 29, 24, 22, 24, 25, 25, 25, 33, 27,
        25, 25, 29, 21, 28, 31, 24, 26, 26, 24, 32, 28, 22, 27, 31, 27,
        24, 20, 23, 25, 25, 29, 20, 22, 24, 29, 27, 23, 30, 20, 25, 24,
        26, 26, 26, 15, 29, 30, 31, 30, 28, 30, 24, 16, 25, 20, 26, 28,
        20, 23, 28, 23]], dtype=int32)
U1=(U**2).sum(0)
U1
array([27, 26, 25, 32, 26, 21, 24, 27, 27, 29, 26, 25, 23, 29, 27, 22, 24,
       29, 30, 29, 25, 24, 21, 25, 24, 25, 27, 28, 26, 25, 24, 27, 28, 27,
       26, 24, 22, 27, 28, 28, 23, 21, 26, 23, 32, 26, 22, 24, 21, 28, 19,
       25, 22, 22, 28, 27, 24, 28, 25, 16, 25, 27, 25, 26, 24, 22, 26, 21,
       22, 27, 23, 26, 25, 27, 25, 20, 27, 29, 25, 26], dtype=int32)
BU1=2*B@U
BU1
array([[32, 34, 24, ..., 30, 32, 34],
       [24, 26, 30, ..., 28, 30, 28],
       [26, 30, 30, ..., 32, 24, 32],
       ...,
       [26, 24, 30, ..., 22, 22, 24],
       [30, 28, 32, ..., 30, 30, 30],
       [24, 22, 26, ..., 16, 26, 24]])
B1.T*U1-BU1
array([[778, 746, 726, ..., 840, 718, 746],
       [678, 650, 620, ..., 726, 620, 648],
       [676, 646, 620, ..., 722, 626, 644],
       ...,
       [595, 574, 545, ..., 645, 553, 574],
       [726, 700, 668, ..., 782, 670, 698],
       [597, 576, 549, ..., 651, 549, 574]])
((B1.T*U1-BU1)*Z).sum()
2486869

1.3.5 Ex5:连续整数的最大长度

'''输入一个整数的 Numpy 数组,返回其中递增连续整数子数组的最大长度。例如,输入 [1,2,5,6,7],[5,6,7] 为
具有最大长度的递增连续整数子数组,因此输出 3;输入 [3,2,1,2,3,4,6],[1,2,3,4] 为具有最大长度的递增连
续整数子数组,因此输出 4。请充分利用 Numpy 的内置函数完成。(提示:考虑使用 nonzero, diff 函数)'''
x=np.array([1,2,5,6,7])
x
array([1, 2, 5, 6, 7])
np.diff(x)!=1   #F为0,T为1
array([False,  True, False, False])
np.r_[1,np.diff(x)!=1,1]
array([1, 0, 1, 0, 0, 1], dtype=int32)
np.nonzero(np.r_[1,np.diff(x)!=1,1])
(array([0, 2, 5], dtype=int64),)
np.diff(np.nonzero(np.r_[1,np.diff(x)!=1,1]))
array([[2, 3]], dtype=int64)
np.diff(np.nonzero(np.r_[1,np.diff(x)!=1,1])).max()
3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值