第二章 复杂网络基本概念和基础理论

主要研究包括三个层面内容:

  • 复杂网络结构特征:度分布、集聚系数、平均路径长度等;
  • 网络结构特征的生成机制:ER随机网络,BA无标度网络、WS小世界网络等;
  • 复杂网络上的动力学行为:疾病扩散、同步、交通堵塞、博弈等。

一、复杂网络及其结构度量

  1. 现实世界中的复杂网络

    包括技术网络(WWW、互联网、电力网、航空交通网等)、生物网络、社会网络等。

  2. 复杂网络的图论描述

    • 一个图由节点共同组成,记为 G ( V , L ) G(V,L) G(VL),其中 V = { v 1 , v 2 , … , v N } V=\left\{v_{1},v_{2},\ldots,v_{N}\right\} V={v1v2vN} 是节点的集合, V ≠ Φ , L = { l 1 , l 2 , … , l K } V \neq \Phi,L=\left\{l_{1},l_{2},\ldots\right. , \left.l_{K}\right\} V=ΦL={l1l2lK} 是边的集合, l i l_{i} li 必须与 V V V 中的节点相关联,即 l i l_{i} li 的两个端点都在集合 V V V 中。其中 N N N 是网络中节点的总数, K K K 是网络中边的总数。

    • 当一个网络中的任何两节点之间都 有一条边时,这个网络是一个完全图 (complete graph)。

    • 在一个图中,由两两相邻的节点及其相关联的边构成的点边序列称为链。若链中的节点均不相同,则称为初等链。当一个图的任意两点之间至少有一条初等链时,这个图是一个连通图 (connected graph)。

    • 在图论描述的基础上,网络可以用邻接矩阵的方法进行表示。对于图 G ( V , L ) G(V,L) G(VL) ,对应邻接矩阵表达 A i j A_{i j} Aij 是一个 N ⋅ N N \cdot N NN 的方阵。如果图中的点 v i v_{i} vi v j v_{j} vj 之间有一条边 l i j l_{i j} lij,则矩阵元素 a i j = 1 a_{i j}= 1 aij=1,否则 a i j = 0 a_{i j}=0 aij=0

    • 同时根据结点的交互作用,网络还可分忧加权网络或有向网络。

  3. 复杂网络的结构特征

    给出一些重要结构特征:

    • 度分布:

      • :即网络中与该节点相连接的其他节点的数目;

        1. 有向网络的度包括出度入度两部分,结点 i i i 的度为 k i = k i o u t + k i i n k_{i}=k_i^{out}+k_i^{in} ki=kiout+kiin
      • 度分布:节点度的分布函数 P ( k ) P(k) P(k)​ 表示在网络中随机选择一个节点,该节点的度恰好为 k k k 的概率,或者网络中具有度为 k k k 的节点的比例;

        1. 有向网络,需计算 P ( k o u t ) P(k^{out}) P(kout) P ( k i n ) P(k^{in}) P(kin)

        2. 所有节点的度的平均值称为网络的平均度 < k > <k> <k>,是度分布函数的一阶矩,即 < k > = ∑ k k P ( k ) <k>=\sum\limits_k {kP(k)} <k>=kkP(k)

    • 根据度分布特性可分为:无标度分布(scale - free distribution)、单标度分布(single - scale distribution)和宽标度分布 (broad - scale distribution。

      • 无标度网络:度分布在双对数(Log-Log)下为线性分布,即 P ( k ) = k − γ P(k)=k^{-\gamma} P(k)=kγ 服从幂律分布称为无标度分布;

        1. 幂律分布的图形没有峰值, 大多数节点仅有少量连接, 而少数节点拥有大量连接;
        2. 由于样本的有限性, 数据就会出现相当强的噪声, 即数据在度分布的尾部震荡幅度较大, 表现出胖尾现象。 如果这种情况出现, 可以度量网络的累积度分布(cumulative degree distribution)函数 P C u m ( k ) = ∑ k ′ = k ∞ P ( k ′ ) {P_{{\rm{Cum }}}}(k) = \sum\limits_{{k^\prime } = k}^\infty P \left( {{k^\prime }} \right) PCum(k)=k=kP(k) 来进行消除。
      • 单标度分布:累积度分布函数在线性-对数坐标下呈现线性分布, 在双对数坐标下呈现出快速衰减的尾部,如图2-5所示。

        [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XZqCneit-1644735902732)(复杂网络上的博弈.assets/image-20220213093442288.png)]

      • 宽标度分布:节点度服从高斯分布函数,也称截断的幂律分布,如图2-6所示。

        [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZjIw7poY-1644735902735)(复杂网络上的博弈.assets/image-20220213093653057.png)]

    • 度相关性:一个度为 k k k 的节点有一个度为 k ′ k' k 的邻居节点的概率 P ( k ′ ∣ k ) P(k'|k) P(kk)

      1. 度为 k k k 的节点的邻居的平均度为
        k n n ( k ) = ∑ k ′ k ′ ⋅ P ( k ′ ∣ k ) k_{n n}(k)=\sum_{k^{\prime}} k^{\prime} \cdot P\left(k^{\prime} \mid k\right) knn(k)=kkP(kk)
        由于实际度量时网络规模的有限性,直接计算 P ( k ′ ∣ k ) P(k'|k) P(kk) 的噪声较大,故定义点 i i i 的邻居平均度来解决,即
        k n n ( i ) = 1 k i ∑ j ∈ Ω i k j k_{n n}(i)=\frac{1}{k_{i}} \sum_{j \in \Omega_{i}} k_{j} knn(i)=ki1jΩikj
        其中 Ω i \Omega_i Ωi 是结点 i i i 的邻居集合。

        此时计算度为 k k k节点的邻居的平均度
        k n n ( k ) = 1 N k ∑ k i = k k n n ( i ) k_{n n}(k)=\frac{1}{N_{k}} \sum_{k_{i}=k} k_{n n}(i) knn(k)=Nk1ki=kknn(i)
        其中, N k N_k Nk 是网络中度为 k k k 的节点的数量。

      2. 无关联图和关联图

        度为 k k k 的节点的邻居的平均度 k n n ( k ) k_{nn}(k) knn(k) 与度 k k k 相独立,即 k n n ( k ) = < k 2 > < k > k_{nn}(k)=\frac{<k^2>}{<k>} knn(k)=<k><k2>,称为无关联图,否则为关联图。

      3. 同配网络和异配网络

        如果 k n n ( k ) k_{nn}(k) knn(k) 随着度 k k k 的增大而增大,即网络中高连接度的节点倾向于连接其他高连接度节点,该网络称为同配网络,否则为异配网络。

      4. 同配性系数

        用于描述网络的匹配形式,公式为
        r = M − 1 ∑ i j i k i − [ M − 1 ∑ i 1 2 ( j i + k i ) ] 2 M − 1 ∑ i 1 2 ( j i 2 + k i 2 ) − [ M − 1 ∑ i 1 2 ( j i + k i ) ] 2 r = {{{M^{ - 1}}\sum\limits_i {{j_i}} {k_i} - {{\left[ {{M^{ - 1}}\sum\limits_i {{1 \over 2}} \left( {{j_i} + {k_i}} \right)} \right]}^2}} \over {{M^{ - 1}}\sum\limits_i {{1 \over 2}} \left( {j_i^2 + k_i^2} \right) - {{\left[ {{M^{ - 1}}\sum\limits_i {{1 \over 2}} \left( {{j_i} + {k_i}} \right)} \right]}^2}}} r=M1i21(ji2+ki2)[M1i21(ji+ki)]2M1ijiki[M1i21(ji+ki)]2
        其中 j i j_i ji k i k_i ki 分别是无标度网络中第 i i i 条边的两个端点的度。

    • 平均路径长度

      • 在无向、 无权网络中, 两个节点 i i i j j j 之间的最短路径长度(距离) d i j d_{ij} dij 定义为连通这两个节点的最短路径上的边数。

      • 任意两个节点之间的最短路径长度的最大值为网络的直径(diameter),记为 D D D
        D = max ⁡ i , j ( d i j ) D{\rm{ = }}\mathop {\max }\limits_{i,j}({d_{ij}}) D=i,jmax(dij)

      • 任意两节点之间的最短路径长度进行平均, 即可得到整个网络的平均最短路径长度,为
        L = 1 N ( N − 1 ) ∑ i , j ∈ N , i ≠ j d i j L=\frac{1}{N(N-1)} \sum_{i, j \in N, i \neq j} d_{i j} L=N(N1)1i,jN,i=jdij
        其中 N N N 为网络中结点的总数。

    • 集聚系数

      用于衡量网络集团化程度的重要参数, 即连接在一起的集团各自的近邻之中有多少是共同的近邻。假定某一节点 i i i k i k_i ki 个最近邻, 那么在这些最近邻中最多可能存在 k i ( k i − 1 ) 2 \frac{k_i(k_i-1)}{2} 2ki(ki1) 条连接, 用 E i E_i Ei 表示这些最近邻的点之间实际存在的连接数, 则点 i i i集聚系数定义为
      C i = 2 E i k i ( k i − 1 ) C_{i}=\frac{2 E_{i}}{k_{i}\left(k_{i}-1\right)} Ci=ki(ki1)2Ei
      对网络中所有结点的集聚系数取平均值,就得到了整个网络的集聚系数,它描述了网络中节点与节点集结成团的趋势。

    • 社区结构

      网络中存在组内的边远稠密于组间的边的结构, 这种结构称为网络的社区结构

      • 划分方法:层级聚集法、最短路径介数法等。同时对划分结果可以用模块性指数 Q Q Q 进行评价。

      • 考虑某种划分形式, 它将网络划分成 k k k 个社团。 定义一个 k ⋅ k k \cdot k kk 维的对称矩阵 E = ( e i j ) E = (e_{ij}) E=(eij),其中元素与表示网络中连接 i i i 社区和 j j j 社区的边在所有边中所占的比例; 对角线 上各元素之和为 T r E = ∑ i e i j TrE=\sum\limits_ie_{ij} TrE=ieij ,表示网络中某一个社区内部各节点之间的边在所有边中 i i i 所占比例。 每行(或每列)中各元素之和为 a i = ∑ j e i j a_i=\sum\limits_je_{ij} ai=jeij,表示与第 i i i 个社区中节点相连 j 的边在所有边中的比例。 在此基础上, 定义模块性指数
        Q = ∑ i ( e i j − a i 2 ) Q=\sum\limits_i(e_{ij}-a_i^2) Q=i(eijai2)
        Q = 0 Q=0 Q=0,表示社区内部边的比例与社区之间边的比例相等,摄取内部和外部无明显差异;

        Q → 1 Q\rightarrow1 Q1,说明社区划分非常明显,一般 Q ≥ 0.3 Q\ge0.3 Q0.3 即可。

二、复杂网络模型

  1. 规则网络模型

    特征:每个节点的连接度基本一致; 网络的平均路径长度与网络的规模成正比; 整个网络可以看成由结构相同的许多“子网络” 组合而成。

    • 全局耦合网络

      即图论中的完全图,网络中任意两个节点之间都存在一条连接。平均路径长度和集聚系数都为1。

    • 最近邻耦合网络

      网络中每一个节点只和它周围的 K 2 \frac{K}{2} 2K 邻居节点相连, K K K 为偶数。

      较大 K K K 时,最近邻耦合网络集聚系数为
      C = 3 ( K − 2 ) 4 ( K − 1 ) ≈ 3 4 C=\frac{3(K-2)}{4(K-1)}\approx{3\over4} C=4(K1)3(K2)43
      平均路径长度为 L ≈ N 2 K L\approx{N\over2K} L2KN

    • 规则格子

      规则格子的特征是网络中节点的位置形成了某种格子的形状且相邻节点之间的欧几里得距离保持一致。

      上述两个网络的平均路径长度会随着网络节点数量的憎多迅速噌大。

  2. 随机网络模型

    ER网络,即随机网络模型,有两种产生方法:

    1. 给定连接概率 p p p,去网络中随机连接: 给定规模为 N N N 的网络(网络中有 N 个节点), 那么在这 N N N 个节点之间总共可以存在 N ( N − 1 ) / 2 N(N-1)/2 N(N1)/2 条可能的连接。 以概率 p p p 去选择这些连接, 则最后网络中会存在 p N ( N − 1 ) / 2 pN(N-1)/2 pN(N1)/2 条连接, 网络的平均度为 p ( N − 1 ) p(N-1) p(N1)

      • 节点 i i i 的度为 k k k 的概率服从伯努利二项式分布
        P ( k i = k ) = C N − 1 k p k ( 1 − p ) N − 1 − k P\left(k_{i}=k\right)=C_{N-1}^{k} p^{k}(1-p)^{N-1-k} P(ki=k)=CN1kpk(1p)N1k

      • N N N 足够大时,其度分布服从泊松分布,即
        P ( k ) = e − ⟨ k ⟩ ⟨ k ⟩ k k ! P(k)=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k !} P(k)=ekk!kk

      • 随机网络的集聚系数
        < C > E R = p = < k > N <C>_{ER}=p={<k>\over N} <C>ER=p=N<k>

      • 随机网络的平均路径长度
        < L > E R ∼ l n N l n < k > <L>_{ER}\sim{lnN\over ln<k>} <L>ERln<k>lnN
        与网络规模与平均度的对数成正比。

    2. 给定 m m m 条边,去塞入网络:在随机网络中, 实际连接数是一个随机变量, 其期望值为 E ( n ) = m = p N ( N − 1 ) / 2 E(n)=m=pN(N-1)/2 E(n)=m=pN(N1)/2 那么, 从 N N N 个节点中任意选择两个节点, 若这两个节点之间没有连接则 连之, 反之重新选择两点, 重复这一过程, 直到 m m m 条连接全部用完, 即可得到一个有 N N N 个点和 m 条边的随机网络, 网络的平均度为 2 m / N 2m/N 2m/N

  3. WS小世界网络模型

    特征:具有较短的平均路径长度和较大的集聚系数

    构造方法:

    1. 在最近邻耦合网络环上按顺时针方向依次访问每个节点。

    2. 假设节点 i i i 为当前被访问的节点。顺时针选取与节点 i i i 相连的 m m m 条边中的毎一条连边,边的一个端点仍然固定为 i i i , 以概率 p p p 随机的选取网络中的任一节点作为该边的另一端点,以概率 1 − p 1-p 1p 保持另一端点位置不变。

    3. 在随机连边过程中,不允许出现重边和自环。

      p = 0 p=0 p=0 对应最近邻耦合网络, p = 1 p=1 p=1 对应随机网络。

  4. BA无标度网络模型

    前面已经介绍过,其度分布为负指数幂律分布
    P ( k ) ∼ A k − γ P(k)\sim Ak^{-\gamma} P(k)Akγ
    采用优先连接机制为:新的节点进入网络后优先选择网络中度大的节点进行连接。

  5. 其他复杂网络模型

    • NW小世界网络模型:“随机加边”取代WS小世界模型的“随机断边重连”。
    • 无标度集聚网络模型:相比于BA的低集聚系数,该网络集聚系数可变。
    • 无标度同配网络模型:相比于BA节点度的异配性,该无标度网络同配性可变。
    • 无标度社区网络模型:相比于BA没有明显的社区结构,该网络具有社区结构。

三、复杂网络上的动力学行为

仅介绍几个重要模型

  1. 复杂网络上的疾病扩散

    将传染病研究对象分为几个类:

    • 易感类(S):即由未染病者但有可能被传染的个体所组成的仓室;

    • 潜伏类(E):即由已被感染但可能不具备传染力的个体组成的仓室;

    • 染病类(I):即由已染病并具有传染力的个体所组成的仓室;

    • 移除类®:即由未染病并且具有免疫力的个体组成的仓 室。

    根据不同的传播过程,可以建立SI、SIS、SlIR、SIRS、SEI、SEIS、SEIR、 SEIRS等模型。

    以SIS模型为例

    ρ k ( t ) \rho_{k}(t) ρk(t) 表示度为 k k k 的染病节点在 t t t 时刻的感染密度(感染状态人数比例), 那么在 t t t 时刻度为 k k k 的节点有一条边指向染病结点的概率(度为 k k k 的结点首先要指向度为 i i i 的结点,然后该节点 i i i 还以概率 ρ i ( t ) \rho_i(t) ρi(t) 已被感染),即接触率

    Θ k ( t ) = ∑ i P ( i ∣ k ) ρ i ( t ) \Theta_{k}(t)=\sum_{i} P(i \mid k) \rho_{i}(t) Θk(t)=iP(ik)ρi(t)
    其中 P ( i ∣ k ) P(i \mid k) P(ik) 表示度为 k k k 的节点连接一个度为 i i i 的节点的概率, 在度不相关网络上(即任一节点的度不依赖于它的邻居的连接), 有 P ( i ∣ k ) = i P ( i ) / k P(i \mid k)=i P(i) / k P(ik)=iP(i)/k。那么一个度为 k k k 的节点有 s ( s ⩽ k ) s(s \leqslant k) s(sk) 条边指向染病邻居的概率可由二项式分布给出, 即

    B ( k , s ) = C k s Θ k s ( 1 − Θ k ) k − s B(k, s)=C_{k}^{s} \Theta_{k}^{s}\left(1-\Theta_{k}\right)^{k-s} B(k,s)=CksΘks(1Θk)ks
    λ \lambda λ 表示通过一条边与染病节点相连时的感染概率, 一个度为 k k k 的易感节点被感染的概率是

    P ( S → I ) = 1 − ∑ s B ( k , s ) ( 1 − λ ) 2 = 1 − ( 1 − λ Θ ) k ≈ λ k Θ k P(S \rightarrow I)=1-\sum_{s} B(k, s)(1-\lambda)^{2}=1-(1-\lambda \Theta)^{k} \approx \lambda k \Theta_{k} P(SI)=1sB(k,s)(1λ)2=1(1λΘ)kλkΘk
    最后一个约等号是因为忽略了高阶项。如果设恢复率是1, 由此可建立复杂网络上的疾病传播动力学模型(感染人数—恢复人数):

    d ρ k ( t ) d t = − ρ k ( t ) + λ ( k ) [ 1 − ρ k ( t ) ] Θ ( t ) \frac{\mathrm{d} \rho_{k}(t)}{\mathrm{d} t}=-\rho_{k}(t)+\lambda(k)\left[1-\rho_{k}(t)\right] \Theta(t) dtdρk(t)=ρk(t)+λ(k)[1ρk(t)]Θ(t)

  2. 复杂网络上的同步

    定义:在满足一定条件下,在耦合的影响下,系统的状态输出会逐渐趋同进而完全相等,称为同步(精确同步)。

    常用模型:完全同步、相同步和局域同步模型。

    完全同步为例

    考虑一个由 N N N 个全同耦合振子构成的连续时间耗散系统, 其中节点 i i i 的状态方程为

    x ˙ i = f ( x i ) − σ ∑ j = 1 N l i j H ( x j ) i = 1 , 2 , … , N \dot{x}_{i}=f\left(x_{i}\right)-\sigma \sum_{j=1}^{N} l_{i j} H\left(x_{j}\right) \quad i=1,2, \ldots, N x˙i=f(xi)σj=1NlijH(xj)i=1,2,,N
    其中 x i = ( x ( 1 ) i , x ( 2 ) i , … , x ( n ) i ) ∈ R n x_{i}=\left(x(1)_{i}, x(2)_{i}, \ldots, x(n)_{i}\right) \in R^{n} xi=(x(1)i,x(2)i,,x(n)i)Rn 为节点 i i i状态变量; 常数 σ > 0 \sigma>0 σ>0 为网络的耦合强度; H : R n → R n H: R^{n} \rightarrow R^{n} H:RnRn 为各个节点之间的耦合函数, 也称为节点的输出函数, 假定各节点的输出函数是相同的; 耦合矩阵 L = ( l i j ) ∈ R v ⋅ v L=\left(l_{i j}\right) \in R^{v \cdot v} L=(lij)Rvv 表示网络的拓扑结构, 满足耦合条件 ∑ j a i j = 0 \sum_{j} a_{i j}=0 jaij=0 。在图论中, 耦合矩阵 L L L 称为图的拉普拉斯矩阵。假设网络是连通的, L L L 是一个不可约矩阵。当 t → ∞ t \rightarrow \infty t 时, 如果有 x 1 ( t ) → x 2 ( t ) → … → x N ( t ) → s ( t ) x_{1}(t) \rightarrow x_{2}(t) \rightarrow \ldots \rightarrow x_{N}(t) \rightarrow s(t) x1(t)x2(t)xN(t)s(t), 则称网络达到完全同步。

  3. 复杂网络上的博弈

    本笔记的主要记录内容,其具体框架如下:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-q5BE31p6-1644735902737)(复杂网络上的博弈.assets/image-20220213141616873.png)]

    其基本思路为:

    • 用博弈模型(如囚徒困境博弈、 雪崩博弈、 牡鹿捕捉博弈) 描述个体的博弈情境;

    • 用复杂网络模型(如规则网络、 小世界网络、 无标度网络、 社区网络、 动态网络)刻画个体之间的交互作用关系, 个体位于网络节点上, 节点之间边表示博弈关系;

    • 有限理性的个体在初始状态随机选择一个博弈策略, 然后在博弈的过程中采取某种策略调整的动力学规则不断地调整或改变自己的博弈策略, 整个群体最终达到一种动态均衡的合作状态, 即群体中存在一定密度或比例的合作者。

    博弈个体策略调整的动力学规则主要包括:

    • 模仿最优:当博弈个体更新自身的博弈策略时, 会比较自己和所有邻居的收益大小, 选择产生最高收益的博弈策略作为自己下一次博弈的策略。 如果不同的策略产生了相同的博弈收益, 则随机选择一个策略作为下一次博弈的策略。

    • 复制动力学:当某个博弈个体 i i i 要更新自身的博弈策略时, 他随机地选择一个自己的邻居 j j j 进行收益比较, 如果邻居 j j j 的博弈收益 U j U_j Uj 大于自身的博弈收益 U i U_i Ui,即 U j > U i U_j>U_i Uj>Ui,个体 i i i 在下次博弈中以概率 P i P_i Pi 模仿个体 j j j 的策略
      P i ( s i ← s j ) = U j − U i D ⋅ max ⁡ ( k i , k j ) P_{i}\left(s_{i} \leftarrow s_{j}\right)=\frac{U_{j}-U_{i}}{D \cdot \max \left(k_{i}, k_{j}\right)} Pi(sisj)=Dmax(ki,kj)UjUi
      其中 D D D​ 为博弈矩阵中最大参数与最小参数的差,其作用是使得概率 P i P_i Pi 保持在 0 ∼ 1 0 \sim 1 01 的范围。

    • Femi 过程:Femi 更新规则允许非理性的概率模仿, 即在策略调整中引入噪声参数刻画博弈个体的非理性选择,其策略与复制动力学相同,概率不同,为
      P ( i ↩ j ) = 1 1 + e [ ( U i − U j ) / k ] P_{(i \hookleftarrow j)}=\frac{1}{1+e^{\left[\left(U_{i}-U_{j}\right) / k\right]}} P(ij)=1+e[(UiUj)/k]1
      k ( k ≥ 0 ) k(k\ge0) k(k0) 刻画的是噪声效应,允许个体进行非理性选择。

  4. Moran 过程

    动力学机制:每个时刻,一个个体被选择出来繁殖后代。个体 i i i 被选择出来的概率 P i P_i Pi 正比于其适应度(Fitness)。个体 i i i 产生的后代与其有着相同的策略, 其后代将随机替代个体 i i i 的一个邻居。
    P i = U i ∑ U j P_i={U_i\over \sum U_j} Pi=UjUi
    其中, U i U_i Ui 表示个体 i i i 的适应度,即博弈的收益。

  5. 平均场理论

    在一个非常大的群体里, 个体与随机选择的有限数量的其他个体进行博弈, 可以用平均场理论(Mean-Field Approximation Theory)进行近似解析求解。在图1-5博弈情景下,

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RJxO87am-1644735902738)(复杂网络上的博弈.assets/image-20220212134057708.png)]

    当前群体中采取合作策略的个体的密度为 ρ \rho ρ,采取背叛策略的个体的密度为 1 − ρ 1 -\rho 1ρ,每个个体与其他 z z z 个随机选择的个体进行博弈。 那么, 合作策略者和背叛策略者的平均收益 U c U_c Uc U d U_d Ud分别为
    U C = R z ρ + S z ( 1 − ρ ) U D = T z ρ + P z ( 1 − ρ ) \begin{array}{l} U_{C}=R z \rho+S z(1-\rho) \\ U_{D}=T z \rho+P z(1-\rho) \end{array} UC=Rzρ+Sz(1ρ)UD=Tzρ+Pz(1ρ)

    整个群体的平均收益
    U ˉ = ρ U C + ( 1 − ρ ) U D \bar{U}=\rho U_{C}+(1-\rho) U_{D} Uˉ=ρUC+(1ρ)UD
    根据第一章的复制动态微分方程, 采用合作策略的博恋参与者的密度 ρ \rho ρ 的变化可以用动态微分方程进行描述, 即
    d ρ d t = ρ ( U c − U ˉ ) = ρ ( 1 − ρ ) ( U C − U D ) \frac{\mathrm{d} \rho}{\mathrm{d} t}=\rho\left(U_{c}-\bar{U}\right)=\rho(1-\rho)\left(U_{C}-U_{D}\right) dtdρ=ρ(UcUˉ)=ρ(1ρ)(UCUD)
    以上宏观层面合作者密度 ρ \rho ρ 的动态变化在微观层面满足近似方程(将上式分配律拆开)

    d ρ d t = ( 1 − ρ ) W ( D → C ) − ρ W ( C → D ) \frac{\mathrm{d} \rho}{\mathrm{d} t}=(1-\rho) W(D \rightarrow C)-\rho W(C \rightarrow D) dtdρ=(1ρ)W(DC)ρW(CD)
    其中, W ( D → C ) W(D \rightarrow C) W(DC) 表示背叛策略个体转变为合作策略个体的概率, W ( C → D ) W(C \rightarrow D) W(CD) 表示合作策略个体转变为背叛策略个体的概率。
    当博弈个体的策略更新调整规则为 Femi 过程时, 合作者密度 ρ \rho ρ 的动态变化为
    d ρ d t = ρ ( 1 − ρ ) tanh ⁡ [ ( U C − U D ) / 2 k ] \frac{\mathrm{d} \rho}{\mathrm{d} t}=\rho(1-\rho) \tanh \left[\left(U_{C}-U_{D}\right) / 2 k\right] dtdρ=ρ(1ρ)tanh[(UCUD)/2k]
    根据上述收益和动态变化方程,进而可以得到群体中合作者密度的均衡状态。比如, 对于囚徒困境博弈, 合作者的密度在长时间演化下将会趋于0。

  • 4
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 数论讲义第二版上册pdf是一本关于数论的教材,主要介绍了数论的基本概念、方法和定理。这本书的第二版相比于第一版,在内容上进行了更新和修订,更加全面和细致地介绍了数论的各个方面。 数论是研究整数性质的数学分支,是数学的一个重要分支之一。它的研究对象是整数,并通过一系列的方法和技巧来研究整数的各种性质。数论在密码学、编码理论、组合数学等领域有广泛的应用。 这本讲义上册pdf的内容包括了数论的基本性质、整数的分类、素数的性质、同余关系、欧几里得算法、二次剩余等内容。这些内容涵盖了数论的基础知识,并引出了更加深入的研究方向。 读者可以通过学习这本讲义,系统地了解和学习数论的基本原理和方法,掌握数论的基本技巧和应用。讲义给出了详细的证明和例题,帮助读者更好地理解和掌握数论的概念和定理。 这本讲义的第二版集结了数论研究的最新成果和进展,对于对数论有兴趣的学生和研究者来说是一本很好的参考书。无论是初学者还是有一定数论基础的读者,都可以通过这本讲义来提升自己的数论水平。 总之,数论讲义第二版上册pdf是一本关于数论的教材,通过系统的介绍来帮助读者理解和掌握数论的基本概念和方法,是学习数论的一本重要参考书。 ### 回答2: 数论讲义第二版上册PDF是一本关于数论的教材,适合学习和研究数论领域的读者使用。这本讲义主要涵盖了数论的基础知识和概念,以及一些常见的数论问题和定理。通过学习这本讲义,读者可以系统地了解和掌握数论的理论和方法。 这本讲义的上册PDF文件包含了许多章节,每个章节都介绍了一个特定的数论主题。例如,第一章介绍了数学归纳法和整数的基本性质;第二章讨论了整数的因子和倍数;第三章讲解了最大公因数和最小公倍数的概念和计算方法;第四章介绍了素数的性质和应用;第五章研究了同余方程和同余定理的相关内容等。 这本讲义的特点之一是理论与实践相结合。每个章节都包含了大量的例题和习题,读者可以通过解题来加深对数论知识的理解和掌握。此外,讲义还提供了一些数论问题的解答和证明,帮助读者更好地理解相关定理和方法。 除了基础知识和理论,这本讲义还涉及了一些高级的数论概念和技巧。例如,讲义的最后几章讨论了欧拉函数、费马小定理、同余定理的应用、二次剩余等内容,这些内容对于深入研究数论和解决复杂的数论问题非常有帮助。 总的来说,数论讲义第二版上册PDF是一本全面且系统地介绍数论基础知识和方法的教材。通过学习和使用这本讲义,读者可以提高自己在数论领域的知识和技能,进一步拓宽数学思维的广度和深度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值