第三章 规则网络上的博弈

一、规则网络上的博弈概述

  1. 规则网络上的囚徒困境博弈

    • 基于方格网上的研究发现, 与确定性的模仿最优规则相比, 允许非理性的概率模仿更优规则使得方格网对合作行为的促进效果减弱。

    • 具有重叠三角形结构的 Kagome 格子相对于其他两种规则格子结构更有利于合作行为的涌现,即合作行为对个体之间的局部连接细节非常敏感。

    • 个体非理性决策程度高的情形下, 树状规则网络更有利于合作行为的维持; 而在个体非理性决策程度低的情形下, 重叠三角形规则网络更有利于合作行为的维持。这说明网络结构对合作演化的影响与个体所采取的策略 学习规则有非常紧密的关系。

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-85EybPkq-1644814450459)(复杂网络上的博弈.assets/image-20220213185754209.png)]

    • 针锋相对策略在空间结构上能够有效地抵御背叛行为的入侵, 但局部的强 制合作措施并不一定有助于合作行为的演化。

    • 引入个体属性差异后,群体的合作水平可以得到明显提高。

    • 传播能力更强的个体之间所建立的临时连接能在所有的囚徒困境博弈参数范围内有效地维持合作行为的演化。

  2. 规则网络上的雪崩博弈

    • 在不同的策略调整规则下, 均衡状态中合作者的密度有着很大的区别。在最优反应的策略调整规则下, 合作者始终在均衡状态中存在。
    • 在模仿最优策略调整规则下, 一些在复制动力学 策略调整规则下表现出抑制合作行为的参数区间, 表现出了对合作行为的促进作用。
    • 空间网络中个体的连接度水平会影响到其他网络结构特征对合作行为演化的作用。
    • 相比于模仿最优和复制动态策略更新规则, Moran 过程对于合作行为的演化具有非常好的促进作用。
    • 与不具有节点权重的情形相比,权重分布都对合作产生了积极的促进作用。
    • 当雪崩博弈的成本收益比率较小时, 系统演化为全面合作的状态; 而当成本收益比率较大时, 合作者和背叛者在系统中共存
  3. 规则网络上的牡鹿捕捉博弈

    全面合作是牡鹿捕捉博弈演化经常出现的结果。

二、方格网上的囚徒困境博弈

博弈个体位于一个 n ⋅ n n\cdot n nn 方格网的节点上, 与直接相连的 4 个邻居进行囚徒困境博弈, 博弈矩阵如图1-5所示, 其中 T > R > P > S T > R>P>S T>R>P>S C C C 和合作策略, D D D 为背叛策略。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kx7tln9i-1644814450463)(复杂网络上的博弈.assets/image-20220212134057708.png)]
为简化研究, 令囚徒困境博弈中的参数为 R = 1 , T = b ( b > 1 ) , S = P = 0 R=1,T=b(b>1),S=P=0 R=1,T=b(b>1),S=P=0 b b b 参数取值越大, 背叛行为的收益越大, 对于个体采取背叛行为的诱惑越大。

每轮博弈中,每个个体的博弈收益是与 4 个邻居进行博弈的收益总和。在下一次博弈中, 个体采用模仿最优策略更新规则调整策略, 即选择自己和 4 个邻居中产生最大博弈收益的策略作为自己下一次的博弈策略。

仿真结果表示:

  • 持续合作的个体能够通过形成聚集(Clusters)抵御背叛行为带来的诱惑,在演化的均衡状态得以生存;随着背叛诱惑 b b b 的僧大, 动态均衡状态下的合作者比例减小, 背叛者的比例增大。
  • 对于初始状态只有位于方网格中央的背叛者时,位于网络中央的背叛者可以逐渐影响到周围的个体, 形成背叛行为的向外传播,然后逐步达到均衡状态,即合作者和背叛者在系统中共存。
  • 对于囚徒困境博弈,空间结构对合作行为的作用时正面的。

三、规则格子上的雪崩博弈

博弈个体位于4种规则格子, 包括三维格子、方格网、六维格子和八维格子的节点上, 与直接相连的邻居进行雪崩博弈(博弈矩阵如图1-3 所示)。
(img-5g1Mgx6j-1644814450464)(复杂网络上的博弈.assets/image-20220212130913831.png)]
为简化研究, 令 r = c / ( 2 b − c ) r=c/(2b-c) r=c/(2bc),使得模型中只具有一个参数 r r r 0 < r < 1 0<r<1 0<r<1,简称为成本收益率), 如图3-5所示。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aBySULQE-1644814450464)(复杂网络上的博弈.assets/image-20220213194214198.png)]
每个个体的博弈收益是与所有邻居进行博弈的收益总和。个体采用复制动力学更新规则调整策略,模仿概率为
P i ( s i ← s j ) = U j − U i ( 1 + r ) n P_{i}\left(s_{i} \leftarrow s_{j}\right)=\frac{U_{j}-U_{i}}{(1+r) n} Pi(sisj)=(1+r)nUjUi
其中, U i U_i Ui U j U_j Uj 分别代表个体 i i i 和个体 j j j 的博弈收益, n n n 表示规则格子的维度, 1 + r 1+r 1+r 为博弈情境中最大参数 1 + r 1+ r 1+r 与最小参数 0 的差。策略更新使用同步和异步两种更新形式。

仿真结果表示:

图 3-6 给出雪崩博弈在四种空间规则格子下的演化均衡结果。横轴代表成本收益率 r 的取值, 纵轴表示演化均衡状态下的合作者比例。虚线表示随机作用条件下的演化均衡解, 实线表示对近似方法下的理论解。

  • 同步和异步更新没有明显差异;
  • 对于较小的成本收益率 r r r, 空间结构(小方框)对应着比虚线更高的合作者比例, 表现出对于合作行为的促进作用。
  • 对于中等和较高的成本收益率 r r r, 空间结构 (小方框)对应着比虚线更低的合作者比例, 表现出对于合作行为的抑制作用。

囚徒博弈和雪崩博弈比较

空间结构对二者产生不同作用效果的原因:囚徒困境博弈中的合作者通过形成紧座的大块聚集抵御背叛的诱惑。但是, 在图 3-7(b) 中, 雪崩博弈中的合作者分散开来, 形成许多小的树杈状的聚集,缺乏产生紧凑的大块聚集的能力。


主要是因为雪崩博弈中的收益参数保护了位于合作者扩散过程中树杈状结构拐角处的背叛者,进而使得空间结构在某些参数条件下表现出对合作行为的抑制作用。

四、规则格子上的牡鹿捕捉博弈

  1. 规则格子上的牡鹿捕捉博弈模型构建

    模型第一章已经介绍过,其博弈矩阵如图 3-9 所示,其博弈收益的关系为 R > T > P > S R>T>P>S R>T>P>S

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TKPKYeO5-1644814450465)(复杂网络上的博弈.assets/image-20220214093111866.png)]
    博弈个体位于 4 种不同维度的空间规则格子上:二维、四维、六维、八维格子。博弈邻居与规则格子的维度相同。

    将个体 i i i 在一次博弈中所采取的策略表示为一个策略向量 s i s_i si,令 C C C 策略的策略向量为 ( 1 , 0 ) (1, 0) (1,0), D 策略的策略向量为 ( 0 , 1 ) (0, 1) (0,1) 。那么, 个体在第 τ \tau τ 次博弈中获得的总收益可以表示为
    U i ( τ ) = ∑ j ∈ Ω i s i A s j T U _ { i } ( \tau ) = \sum _ { j \in \Omega_i } s _ { i } As_j ^ { T } Ui(τ)=jΩisiAsjT
    其中, Ω i \Omega _i Ωi 表示第 τ \tau τ 次博弈中与个体 i i i 进行博弈的个体集合; s i s_i si 为个体在 τ \tau τ 时刻的策略向量, s j T s_j^T sjT 为个体 i i i 进行博弈的个体 j j j τ \tau τ 时刻的策略向量的转置; A A A 为图 3-9 所示的收益矩阵。策略更新规则为 Femi 过程。更新概率与第二章相同
    P ( i ↩ j ) = 1 1 + e [ ( U i − U j ) / k ] P_{(i \hookleftarrow j)}=\frac{1}{1+e^{\left[\left(U_{i}-U_{j}\right) / k\right]}} P(ij)=1+e[(UiUj)/k]1

  2. 随机作用下牡鹿捕捉博弈的演化均衡解分析

    根据平均场理论,如果博弈初始时刻群体的合作者密度 x ( 0 < x < 1 ) x(0<x< 1) x(0<x<1),且个体策略更新规则力 Femi 过程,合作者密度 x x x演化动力学方程
    d x d t = x ( 1 − x ) tanh ⁡ ( U C − U D ) 2 k \frac{\mathrm{d} x}{\mathrm{d} t}=x(1-x) \tanh {\left(U_{C}-U_{D}\right) \over 2 k} dtdx=x(1x)tanh2k(UCUD)
    其中 k k k 为 Femi 策略更新规则中的噪声项。

    根据图 3-9 所示的牡鹿捕捉博弈矩阵, U C U_C UC U D U_D UD 分别为
    U C = n [ R x + S ( 1 − x ) ] U D = n [ T x + P ( 1 − x ) ] U_C=n[Rx+S(1-x)]\\ U_D=n[Tx+P(1-x)] UC=n[Rx+S(1x)]UD=n[Tx+P(1x)]

    U C U_C UC U D U_D UD 带入演化动力学方程,得
    d x d t = x ( 1 − x ) tanh ⁡ ( n [ x ( R − T + P − S ) + ( S − P ) ] 2 k ) {d x \over d t} = x ( 1 - x ) \tanh ( \frac { n [ x ( R - T + P - S ) + ( S - P ) ] } { 2 k } ) dtdx=x(1x)tanh(2kn[x(RT+PS)+(SP)])
    根据函数性质,可知

    • ( P − S ) / ( R − T + P − S ) < x < 1 (P-S)/(R-T+P-S)<x<1 (PS)/(RT+PS)<x<1 时,有 d x d t > 0 {dx \over dt}>0 dtdx>0,此时 x x x 单调递增,因此,对于任意初始合作者密度 x ( 0 < x < 1 ) x(0<x<1) x(0<x<1),群体将最终演化为 x = 1 x = 1 x=1,即全面合作。
    • 相反,当 0 < x < ( P − S ) / ( R − T + P − S ) 0<x<(P-S)/(R-T+P-S) 0<x<(PS)/(RT+PS) 时,有 d x d t < 0 {dx \over dt}<0 dtdx<0,最终演化为 x = 0 x=0 x=0,即全面背叛。
    • 个体作用人数 n n n 及 Femi 过程的噪声 k k k 不会影响演化结果,只会影响演化稳定状态的速度。
    • 群体最终达到全面合作演化状态的初始合作者密度 x x x临界条件 P ∗ = P − S R − T + P − S ( 0 < P ∗ < 1 ) P^*={P-S\over R-T+P-S}(0<P^*<1) P=RT+PSPS(0<P<1),当初始合作者密度 x > P ∗ x>P^* x>P,群体最终演化为全面合作,否则演化为全面背叛。

    因此,牡鹿捕捉博弈的演化均衡解如图 3-11 所示


    由图可以看出,虚线为临界条件。随机作用条件下的合作者均衡密度由初始合作者密度 x 和博弈收益所确定的 P ∗ P^* P 共同决定。当 0 < x < P ∗ 0< x< P^* 0<x<P 时, P C = 0 P_C=0 PC=0,即群体演化为全面背叛; 当 P ∗ < x < 1 P^*<x<1 P<x<1 时, P C = 1 P_C = 1 PC=1,即群体演化为全面合作。

  3. 仿真实验结果及讨论

    x x x 为初始时刻个体选择 C C C 策略作为自己初次博弈的策略概率。 t t t 时刻的合作者密度为 x ( t ) = n C ( t ) N x(t)={n_{C(t)}\over N} x(t)=NnC(t)(其中, n C ( t ) n_{C(t)} nC(t) t t t 时刻群体中合作者数量, N N N 为总人数)。

    • 如图 3-14 所示,各曲线左方表示演化为全面合作,右端表示演化为全面背叛。


      可以看出,在博弈收益决定较小的 P ∗ P^* P下, 全面合作行为常常出现, 但在较大的 P ∗ P^* P 下, 全面背叛更普遍。

    • 由图 3 - 15 可以看出


      在不同的 P ∗ P^* P 条件下, 初始状态中零星分散的合作者和背叛者都是通过快速形成关于自身的聚集结构(即图3-15(a)中合作者的紧凑聚集和图3-15(b)中背叛者的树枝状聚集), 并在后续演化产生比对手更加广泛的聚集, 最终实现全面的胜利。这在个体随机作用条件下很难实现。

    • 在不同的 P ∗ P^* P 条件下,空间结构表现出对合作行为的不同作用,初始少数合作者(背叛者)有可能会取得最终的胜利,主要取决于 P ∗ P^* P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值