强化学习:玩转Atari-Pong游戏

玩转Atari-Pong游戏

该项目基于PaddlePaddle框架完成,详情见玩转Atari-Pong游戏

  • Atari: 雅达利,最初是一家游戏公司,旗下有超过200款游戏,不过已经破产。在强化学习中,Atari游戏是经典的实验环境之一,因此,本项目旨在学习使用强化学习算法玩Atari游戏。
  • Pong: 1972年,雅达利(Atari)创办人布什内尔及达布尼推出首款街机Pong,最初仅生产12部,以简单点线接口仿真打乒乓球的游戏,奠定街机始祖地位。该游戏的简略版英文描述为:

You control the right paddle, you compete against the left paddle controlled by the computer. You each try to keep deflecting the ball away from your goal and into your opponent’s goal.

翻译成中文就是:

你控制右边的球拍,你与电脑控制的左边的球拍竞争。你们各自努力使球不断偏离自己的目标,进入对手的目标。

游戏示意图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IpLUQSTe-1668436245727)(https://ai-studio-static-online.cdn.bcebos.com/cbf668ff565c476db70f1c73b0d1fa7d9dc0269401b64c5b8c53389a4d1393fa)]

从该动态图可以看出,不经训练的右侧球拍完全打不过左侧球拍的,因此我们的目标就是训练右侧球拍使其战胜左侧球拍。

  • Pong环境的状态、动作与奖励:

    • 状态:Pong环境提供的状态默认是Box(210, 160, 3),也就是3通道的彩色图
    • 动作:Pong-v0和Pong-V4版本返回的动作都是Discrete(6),也就是离散的6个动作。网上有介绍:Pong 环境介绍,提到其实6个动作中有用的只有3个,可以参考该介绍,加深理解。
    • 奖励:奖励有三种状态:-1,0,1,分别表示右侧未接到球;中间过程;左侧未接到球。
  • 训练结果展示:在这里插入图片描述

1.Atari环境的安装

在运行man.ipynb之前,请先运行help.ipynb生成我们的依赖环境!!!

目前Ai studio平台并没有内嵌Atari环境,需要我们自行安装,为避免反复安装,我们将安装过程写到help.ipynb。可运行我们的help.ipynb进行持久化安装。主要的安装命令如下所示:

  1. ! pip install atari_py==0.2.6 -i https://pypi.tuna.tsinghua.edu.cn/simple -t /home/aistudio/external-libraries
  2. ! pip install ale-py -i https://pypi.tuna.tsinghua.edu.cn/simple -t /home/aistudio/external-libraries
  3. ! pip install pyglet -i https://pypi.tuna.tsinghua.edu.cn/simple -t /home/aistudio/external-libraries
  4. ! pip install autorom -i https://pypi.tuna.tsinghua.edu.cn/simple -t /home/aistudio/external-libraries
  5. ! pip install AutoROM.accept-rom-license -i https://pypi.tuna.tsinghua.edu.cn/simple -t /home/aistudio/external-libraries
  6. !rar x Roms.rar
  7. !python -m atari_py.import_roms ROMS

其中需要注意:第4、5条安装命令可能无法一次成功,多运行几次即可;第6条命令一个项目仅运行一次即可。

2.导入我们的依赖包

注意要先将我们自行安装的Atari环境加入到系统中,即

sys.path.append(‘/home/aistudio/external-libraries’)

import sys 
sys.path.append('/home/aistudio/external-libraries')

import gym
import numpy as np
import time
import matplotlib.pyplot as plt
import paddle
import os
from collections import deque,Counter
from visualdl import LogWriter
import copy
from collections import Counter
from matplotlib import animation
from PIL import Image


3.环境测试

检测我们是否可以成功加载环境,并查看我们的状态空间和动作空间

env = gym.make('Pong-v4')
print(env.observation_space)
print(env.action_space)
Box(210, 160, 3)
Discrete(6)

4.状态的预处理

在这里我们首先定义了状态的预处理函数preprocess,该函数说明如下:

  • 输入:状态,Pong环境给出的不加任何处理的环境状态,Box(210, 160, 3)
  • 处理:处理过程可以看我们下边的过程图片。
    • 裁剪:将实际没有用的部分去除,主要是Pong环境返回的图像的上边和下边的部分
    • 下采样:在保留特征的前提下进行像素点的缩减
    • 擦除背景,在我们下采样后,环境的背景其实是有两种(109,144),这个也需要多观察才能看出,可以参考我们给出的示例图。
    • 转为灰度图:非0即1,我们仅保留左右球拍和球,减少不必要因素的干扰
    • 打平:将图像打平,进而只使用线性层进行特征学习
4.1 preprocess函数
def preprocess(image):
    """ 预处理 210x160x3 uint8 frame into 6400 (80x80) 1维 float vector """
    image = image[35:195]  # 裁剪
    image = image[::2, ::2, 0]  # 下采样,缩放2倍
    image[image == 144] = 0  # 擦除背景 (background type 1)
    image[image == 109] = 0  # 擦除背景 
    image[image != 0] = 1  # 转为灰度图,除了黑色外其他都是白色
    return image.astype(np.float).ravel() #打平,(6400,)
4.2 对preprocess函数进行可视化说明,展示中间过程
def show_image(status):

    status1=status[35:195] #裁剪有效区域

    status2 = status1[::2, ::2, 0] #下采样,缩减

    # 观察我们的像素点构成
    def see_color(status):
        allcolor=[]
        for i in range(80):
            allcolor.extend(status[i])

        dict_color=Counter(allcolor)
        print("像素点构成: ",dict_color)

    see_color(status2)


    # 观察好像素点后,擦除背景
    def togray(image_in):
        image=image_in.copy()
        image[image == 144] = 0  # 擦除背景 (background type 1)
        image[image == 109] = 0  # 擦除背景
        image[image != 0] = 1  # 转为灰度图,除了黑色外其他都是白色
        return image

    status3=togray(status2)


    # 可视化我们的操作中间图
    def show_status(list_status):
        fig = plt.figure(figsize=(8, 32), dpi=200)
        
        plt.subplots_adjust(left=None, bottom=None, right=None, top=None,wspace=0.3, hspace=0)

        for i in range(len(list_status)):

            plt.subplot(1,len(list_status),i+1)

            plt.imshow(list_status[i],cmap=plt.cm.binary)

        plt.show()


    show_status([status,status1,status2,status3])
4.3 背景为109的preprocess展示
status = env.reset() #原始图
show_image(status)
像素点构成:  Counter({109: 6382, 101: 16, 53: 2})


/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2349: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  if isinstance(obj, collections.Iterator):
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2366: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  return list(data) if isinstance(data, collections.MappingView) else data
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/image.py:425: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead
  a_min = np.asscalar(a_min.astype(scaled_dtype))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/image.py:426: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead
  a_max = np.asscalar(a_max.astype(scaled_dtype))

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EavJ8qDW-1668436245730)(main_files/main_13_2.png)]

4.4 背景为144的preprocess展示
for i in range(200):
    action=env.action_space.sample()
    status,reward,done,info=env.step(action)


show_image(status)
像素点构成:  Counter({144: 6366, 213: 16, 92: 16, 236: 2})

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fYpFJYfP-1668436245731)(main_files/main_15_1.png)]

5.模型的定义,简单的全连接层

class Model(paddle.nn.Layer):
    """ 使用全连接网络.
    参数:
        obs_dim (int): 观测空间的维度.
        act_dim (int): 动作空间的维度.
    """

    def __init__(self, obs_dim, act_dim):
        super(Model, self).__init__()
        hid1_size = 256
        hid2_size = 64

        self.fc1 = paddle.nn.Linear(obs_dim, hid1_size)
        self.fc2 = paddle.nn.Linear(hid1_size, hid2_size)
        self.fc3 = paddle.nn.Linear(hid2_size, act_dim)

    def forward(self, obs): 
        h1 = paddle.nn.functional.relu(self.fc1(obs))
        h2 = paddle.nn.functional.relu(self.fc2(h1))
        prob = paddle.nn.functional.softmax(self.fc3(h2), axis=-1)
        return prob

6.策略梯度算法

强化学习的经典算法之一,可以参考我们之前的项目【强化学习】REINFORCE算法

在这里我们仅定义预测更新两个函数。

# 梯度下降算法
class PolicyGradient():
    def __init__(self, model, lr):

        self.model = model
        self.optimizer = paddle.optimizer.Adam(learning_rate=lr, parameters=self.model.parameters())


    def predict(self, obs):
        prob = self.model(obs)
        return prob

    def learn(self, obs, action, reward):

        prob = self.model(obs)
        #print("prob: ",prob)
        log_prob = paddle.distribution.Categorical(prob).log_prob(action)
        loss = paddle.mean(-1 * log_prob * reward)

        self.optimizer.clear_grad()
        loss.backward()
        self.optimizer.step()
        return loss

7.策略梯度智能体

  • 我们默认从文件中加载参数进行训练,因为PG算法+Pong环境的训练需要大量的时间,一次直接训练完成很耗时;当然我们支持从0开始训练
  • sample: 在训练时调用的函数,带探索
  • predict:在预测(测试)时调用的函数,不带探索
  • learn:更新函数
  • save和load:保存参数和加载参数。注意:这里我们保存了优化器的参数,但是在加载是并未加载上优化器的参数,有报错,未进行修复,但是不加载优化器参数几乎不影响我们的训练的。(这里我其实不太明白到底需不需加载优化器参数,还望大佬不吝赐教,拜谢)
class Agent():
    def __init__(self, algorithm):
        self.alg=algorithm

        if os.path.exists("./savemodel"):
            print("开始从文件加载参数....")
            try:
                self.load()
                print("从文件加载参数结束....")
            except:
                print("从文件加载参数失败,从0开始训练....")


    def sample(self, obs):
        """ 根据观测值 obs 采样(带探索)一个动作
        """
        obs = paddle.to_tensor(obs, dtype='float32')
        prob = self.alg.predict(obs)
        #print("prob:",prob)
        prob = prob.numpy()
        act = np.random.choice(len(prob), 1, p=prob)[0]  # 根据动作概率选取动作
        return act

    def predict(self, obs):
        """ 根据观测值 obs 选择最优动作
        """
        obs = paddle.to_tensor(obs, dtype='float32')
        prob = self.alg.predict(obs)
        act = prob.argmax().numpy()[0]  # 根据动作概率选择概率最高的动作
        return act

    def learn(self, obs, act, reward):
        """ 根据训练数据更新一次模型参数
        """
        act = np.expand_dims(act, axis=-1)
        reward = np.expand_dims(reward, axis=-1)

        obs = paddle.to_tensor(obs, dtype='float32')
        act = paddle.to_tensor(act, dtype='int32')
        reward = paddle.to_tensor(reward, dtype='float32')

        #print("gggggggggggggg",obs.shape,act.shape,reward.shape)

        loss = self.alg.learn(obs, act, reward)
        return loss.numpy()[0]

    
    def save(self):
        paddle.save(self.alg.model.state_dict(),'./savemodel/PG-Pong_net.pdparams')
        paddle.save(self.alg.optimizer.state_dict(), "./savemodel/opt.pdopt")


    def load(self):

        # 加载网络参数
        model_state_dict=paddle.load('./savemodel/PG-Pong_net.pdparams')
        self.alg.model.set_state_dict(model_state_dict)

        # # 加载优化器参数
        # optimizer_state_dict=paddle.load("./savemodel/opt.pdopt")
        # self.alg.optimizer.set_state_dict(optimizer_state_dict)

8. 训练与测试

8.1 定义训练函数
# 训练一个episode
def run_train_episode(agent, env):
    obs_list, action_list, reward_list = [], [], []
    obs = env.reset()
    while True:
        obs = preprocess(obs)  # from shape (210, 160, 3) to (6400,)
        obs_list.append(obs)
        action = agent.sample(obs)
        
        action_list.append(action)

        obs, reward, done, info = env.step(action)
        # if reward!=0:
        #     print("reward: ",action)

        reward_list.append(reward)

        if done:
            break
    return obs_list, action_list, reward_list
8.2 定义预测函数
# 评估 agent, 跑 5 个episode,总reward求平均
def run_evaluate_episodes(agent, env, render=False):
    eval_reward = []
    for i in range(5):
        obs = env.reset()
        episode_reward = 0
        while True:
            obs = preprocess(obs)  # from shape (210, 160, 3) to (6400,)
            action = agent.predict(obs)
            obs, reward, isOver, _ = env.step(action)
            episode_reward += reward
            if render:
                env.render()
            if isOver:
                break
        eval_reward.append(episode_reward)
    return np.mean(eval_reward)
8.3 定义奖励处理函数

进行奖励衰减操作,衰减因子gamma默认为0.99

def calc_reward_to_go(reward_list, gamma=0.99):
    """calculate discounted reward"""
    reward_arr = np.array(reward_list)
    for i in range(len(reward_arr) - 2, -1, -1):
        # G_t = r_t + γ·r_t+1 + ... = r_t + γ·G_t+1
        reward_arr[i] += gamma * reward_arr[i + 1]
        
    # normalize episode rewards
    reward_arr -= np.mean(reward_arr)
    reward_arr /= np.std(reward_arr)
    return reward_arr
8.4 训练与预测的主函数

便于演示,我们仅进行100次的继续训练,读者可自行增加次数以获得更好的训练效果

def main():
    env = gym.make('Pong-v4')
    obs_dim = 80 * 80
    act_dim = env.action_space.n
    print('obs_dim {}, act_dim {}'.format(obs_dim, act_dim))

    # 根据parl框架构建agent
    LEARNING_RATE = 5e-4
    model = Model(obs_dim=obs_dim, act_dim=act_dim)
    alg = PolicyGradient(model, lr=LEARNING_RATE)
    agent = Agent(alg)

    twriter=LogWriter('./logs/PG_Pong')


    for i in range(100): # default 3000
        obs_list, action_list, reward_list = run_train_episode(agent, env)
        twriter.add_scalar('reward',sum(reward_list),i)
        if i % 50 == 0:
          print("Episode {}, Reward Sum {}.".format(i, sum(reward_list)))

        batch_obs = np.array(obs_list)
        batch_action = np.array(action_list)
        batch_reward = calc_reward_to_go(reward_list)

        #print("ggggggggggggg",batch_obs.shape)

        agent.learn(batch_obs, batch_action, batch_reward)
        last_test_total_reward=0
        if (i + 1) % 100 == 0:
            # render=True 查看显示效果
            total_reward = run_evaluate_episodes(agent, env, render=False)
            print('Test reward: {}'.format(total_reward))

            # save the parameters
            if last_test_total_reward<total_reward:
                last_test_total_reward=total_reward
                agent.save()

# 运行整个程序
main()
obs_dim 6400, act_dim 6


W1022 22:01:06.998914   174 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W1022 22:01:07.003042   174 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.


开始从文件加载参数....
从文件加载参数结束....
Episode 0, Reward Sum 14.0.
Episode 50, Reward Sum 8.0.
Test reward: 12.0

9.使用训练好的网络进行测试并生成动图

9.1 gif动图生成函数
def save_frames_as_gif(frames, filename):

    #Mess with this to change frame size
    plt.figure(figsize=(frames[0].shape[1]/100, frames[0].shape[0]/100), dpi=300)

    patch = plt.imshow(frames[0])
    plt.axis('off')

    def animate(i):
        patch.set_data(frames[i])

    anim = animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=50)
    anim.save(filename, writer='pillow', fps=60)
9.2 从文件加载模型参数
model=Model(6400,6)
model_state_dict=paddle.load("./savemodel/PG-Pong_net.pdparams")
model.set_state_dict(model_state_dict)
9.4 使用训练好的模型进行测试并保存过程为动图
env=gym.make('Pong-v4')

state=env.reset()
frames = []
done=0
i=0
reward_list=[]
while not done:
    frames.append(env.render(mode="rgb_array"))
    obs = preprocess(state)
    obs = paddle.to_tensor(obs, dtype='float32')
    prob = model(obs)
    action = prob.argmax().numpy()[0]
    next_state,reward,done,_=env.step(action)
    if reward!=0:
        reward_list.append(reward)
        print(i,"   ",reward,done)
    state=next_state
    i+=1

reward_counter=Counter(reward_list)
print(reward_counter)
print("你的得分为:",reward_counter[1.0],'对手得分为:',reward_counter[-1.0])
if reward_counter[1.0]>reward_counter[-1.0]:
    print("恭喜您赢了!!!")
else:
    print("惜败,惜败,训练一下智能体网络再来挑战吧QWQ")

save_frames_as_gif(frames, filename="Pong-v4_trained.gif")
    
env.close()


199     1.0 False
732     1.0 False
937     1.0 False
1547     1.0 False
1676     1.0 False
1877     1.0 False
2165     1.0 False
2451     1.0 False
2575     1.0 False
2705     1.0 False
2995     1.0 False
3125     1.0 False
3331     1.0 False
3454     1.0 False
3584     1.0 False
3793     1.0 False
4885     1.0 False
5096     1.0 False
5698     1.0 False
5992     1.0 False
6202     1.0 True
Counter({1.0: 21})
你的得分为: 21 对手得分为: 0
恭喜您赢了!!!

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yCQ3yFtg-1668436245733)(main_files/main_37_1.png)]

10. 总结

本项目参考自飞桨PARL,鼓励大家给点点stars
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-adwdBVQe-1668436245734)(https://ai-studio-static-online.cdn.bcebos.com/92d792700be949219afc12e2d76920190d929c42685e4d29917d3b34fd86fec7)]

本项目目前通过5000+回合的训练,我们的智能体已经学会通过快速抖动法取得游戏的胜利了,但是大概率还不能完全碾压,后续有时间会继续训练或采取更加高效的算法进行改进。然后,这是我的第一个Atari游戏项目,之前都在在经典的控制游戏下进行实验,环境的转变使得学习的难度也上升,训练时间也在增加,学到的东西也在增加,挺好的…还请大佬多多指教,小黑还有很多路要走,嘿嘿!

之前的强化学习项目有:

欢迎大家来交流学习!!!

tionType=1&shared=1)

欢迎大家来交流学习!!!

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
强化学习玩Atari游戏是一种基于深度强化学习算法的方法,其中使用了深度Q学习算法。这种方法通过将游戏界面作为输入,直接从游戏界面中学习,以实现对Atari游戏的学习和玩耍。 具体来说,深度Q学习算法使用了经验回放和目标网络的技术。经验回放是一种存储和重复使用过去的经验的方法,它可以帮助算法更好地学习和记忆。目标网络是一个用于计算目标Q值的网络,它的参数是固定的,以减少目标Q值的变化。 在实现强化学习玩Atari游戏的过程中,可以使用深度强化学习框架,如TensorFlow或PyTorch,来构建深度Q网络。该网络将游戏界面作为输入,并输出每个动作的Q值。然后,根据Q值选择最佳动作,并执行该动作。通过不断与环境交互,更新网络参数,以优化Q值的估计。 以下是一个示例代码,演示了如何使用深度Q学习算法玩Atari游戏中的Pong: ```python import gym import numpy as np import tensorflow as tf # 创建环境 env = gym.make('Pong-v0') # 定义深度Q网络 model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (8, 8), strides=(4, 4), activation='relu', input_shape=(84, 84, 4)), tf.keras.layers.Conv2D(64, (4, 4), strides=(2,2), activation='relu'), tf.keras.layers.Conv2D(64, (3, 3), strides=(1, 1), activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(env.action_space.n) ]) # 定义经验回放缓冲区 replay_buffer = [] # 定义训练参数 epsilon = 1.0 # 探索率 epsilon_decay = 0.99 # 探索率衰减率 epsilon_min = 0.01 # 最小探索率 gamma = 0.99 # 折扣因子 batch_size = 32 # 批量大小 # 定义优化器和损失函数 optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) loss_fn = tf.keras.losses.MeanSquaredError() # 定义目标网络 target_model = tf.keras.models.clone_model(model) target_model.set_weights(model.get_weights()) # 定义训练函数 def train(): # 从经验回放缓冲区中随机采样一批数据 batch = np.random.choice(len(replay_buffer), size=batch_size, replace=False) states, actions, rewards, next_states, dones = zip(*[replay_buffer[i] for i in batch]) states = np.array(states) actions = np.array(actions) rewards = np.array(rewards) next_states = np.array(next_states) dones = np.array(dones) # 计算目标Q值 q_values_next = target_model.predict(next_states) targets = rewards + gamma * np.max(q_values_next, axis=1) * (1 - dones) # 计算当前Q值 with tf.GradientTape() as tape: q_values = model(states) q_values_actions = tf.reduce_sum(q_values * tf.one_hot(actions, env.action_space.n), axis=1) loss = loss_fn(targets, q_values_actions) # 更新网络参数 grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # 开始训练 for episode in range(1000): state = env.reset() state = preprocess(state) # 预处理游戏界面 done = False total_reward = 0 while not done: # 选择动作 if np.random.rand() < epsilon: action = env.action_space.sample() # 随机动作 else: q_values = model.predict(np.expand_dims(state, axis=0)) action = np.argmax(q_values) # 执行动作 next_state, reward, done, _ = env.step(action) next_state = preprocess(next_state) # 预处理游戏界面 # 存储经验 replay_buffer.append((state, action, reward, next_state, done)) # 更新状态和总奖励 state = next_state total_reward += reward # 训练网络 if len(replay_buffer) >= batch_size: train() # 更新目标网络 if episode % 10 == 0: target_model.set_weights(model.get_weights()) # 衰减探索率 epsilon = max(epsilon * epsilon_decay, epsilon_min) # 打印结果 print('Episode: {}, Total Reward: {}'.format(episode, total_reward)) # 演示游戏 state = env.reset() state = preprocess(state) done = False total_reward = 0 while not done: q_values = model.predict(np.expand_dims(state, axis=0)) action = np.argmax(q_values) next_state, reward, done, _ = env.step(action) next_state = preprocess(next_state) state = next_state total_reward += reward env.render() print('Total Reward: {}'.format(total_reward)) env.close() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学陈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值