动态规划的方法求解0/1背包问题

问题描述

假设你要出一趟远门。你只有一个容量为C的背包,但是这里有n个可能要带走的物品。每个物品的体积为\small w1,w2,w3...wn,价值为\small v1,v2,v3...vn

简单来说,0/1背包问题就是在满足背包最大容量的前提下使得包内物品的价值最大。即在满足\sum XiWi<<C的条件下使得\sum XiVi最大。

动态规划

回想动态规划的解题步骤。0/1背包问题的阶段就是“物品的个数”,状态就是“背包的剩余体积”,我们定义状态dp [ i , v ] 以v为剩余体积,考虑前i个物品的最大价值。

对于每一件物品,只有选或不选两种选择。此时我们应该考虑,当前剩余容积是不是能装下第i件物品;

1.若第i件物品装不下,则状态dp[i][j]应与dp[i-1][j]相等。

2.若第i件物品装不下,装下后剩余容积要对应减小即返回到状态dp[i-1][j-w[i]]。同时要加上该物品的价值v[i]。这种情况下的最大价值跟装之前的价值大小相比如何呢?

基于这种思想我们很容易写出状态转移方程:\max (dp[i-1][j] , dp[i-1][j-w[i]]+v[i])

#include<bits/stdc++.h>
using namespace std;
int w[6] = {0,6,3,7,1,4};//物品的重量
int v[6] = {0,2,5,9,4,6};
int dp[6][11]={{0}};
int dp2[17]={0};
int test(){
	for(int i=1;i<=5;i++){	
		for(int j=1;j<=10;j++)
			if(j<w[i])
				dp[i][j]=dp[i-1][j];
			else 
			    dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);
			}
	return dp[5][10];
}

空间优化

不难发现使用一个巨大的二维数组来记录每一层的状态实在太耗费空间。而这个二维数组也仅仅是为了求出最优解而记录下每一层的状态。

实际问题中当只考虑最优解的结果时完全不使用二维数组记录下每一层的状态。仔细观察上述状态转移方程\max (dp[i-1][j] , dp[i-1][j-w[i]]+v[i])不难发现:第i层的状态只与其上一层i-1的状态dp[i-1][j]以及上一层左边某个元素状态dp[i-1][j-w[i]]相关。也就是说,我只需要记录上一层dp[i-1][j]以及dp[i-1][j-w[i]]的状态便可求出最终的最优解。注意:因为要用到上一层左边元素的状态,所以内循环j区别与二维数组的情况,它必须要从右往左进行否则在该层计算时被覆盖。

int test2(){	
	for(int i=1;i<=5;i++)	
		for(int j=10;j>=w[i];j--)
			dp2[j]=max(dp2[j],dp2[j-w[i]]+v[i]);//等号左边是第i层,等号右边是第i-1层  dp[j-w[i]要用到该层前面的值,所以必须得从后往前算以免被覆盖 
	return dp2[10];
}

参考博文:https://www.cnblogs.com/TWS-YIFEI/p/9761200.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值