下载合适的nvidia驱动以使用nvidia-smi

文章描述了解决NVIDIA-SMI无法与NVIDIA驱动通信的问题。解决方案包括彻底卸载所有NVIDIA和CUDA相关包,安装Linux内核头文件,然后从NVIDIA官网下载最新运行文件进行安装。在某些情况下,可能需要重启电脑以使nvidia-smi正常工作。此问题发生在执行系统更新并改变Linux内核后。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方法1

参考:参考资料,可能没有效

方法2

具体参考NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running里面已解决所使用的方法,主要的流程为:先删除所有与cuda有关的内容,再安装CUDA Toolkit

Even with those commands, the issue wasn’t solved.

Eventually, the fastest way to fix 2 machines with a package manager is to purge all Nvidia & Cuda,did it by:

sudo apt-get remove --purge '^nvidia-.*'
sudo apt-get remove --purge '^libnvidia-.*'
sudo apt-get remove --purge '^cuda-.*'

Then after it’s clean ran that:

sudo apt-get install linux-headers-$(uname -r)

From here - it’s the same for all VMs:
Download latest run file from Nvidia site, and run it, accept if needed to upgrade current, or install from scratch.

The driver is back to work. (有时候需要重启电脑才能用nvidia-smi

The issue was started after did some updates, and the Linux kernel was changed.

### 安装 NVIDIA 驱动后 `nvidia-smi` 无法工作的解决方案 当遇到 `NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver` 的错误消息时,这通常意味着系统未能成功加载或启动 NVIDIA 显卡驱动程序。以下是几种可能的原因及相应的解决办法。 #### 检查内核模块状态 确保 NVIDIA 内核模块已正确加载到当前运行的 Linux 内核中。可以通过命令 `lsmod | grep nvidia` 来查看是否有任何名为 "nvidia" 或类似的条目存在[^1]。如果没有找到,则说明该模块未被加载;此时可尝试手动加载它通过执行 `sudo modprobe nvidia` 命令来完成操作。 如果上述方法仍然失败,可能是由于某些原因导致了黑listed(黑名单)处理或是版本不匹配等问题引起冲突阻止其正常运作。这时建议卸载现有驱动并重新安装最新稳定版官方发布的驱动包以排除此类干扰因素影响。 #### 更新 DKMS 并重建初始化内存盘映像文件 有时即使已经正确安装好了图形处理器固件但仍会出现通讯异常的情况发生。为了防止这种情况再次出现,在每次更新操作系统核心之后都应该及时同步升级 Device Kit Module Support(DKMS),即设备管理工具集的一部分功能组件之一——它可以自动编译和安装适用于新旧不同类型的硬件平台上的第三方闭源扩展插件(如专有的 GPU 加速引擎)[^3]。 另外还需要注意的是,每当进行了涉及更改底层架构层面的操作(比如更换主板芯片组之类的重大变动),都应当记得刷新 initramfs (初始 RAM 文件系统的简称)。具体做法是在终端里输入如下指令: ```bash sudo update-initramfs -u ``` 这样做的目的是为了让计算机能够在引导阶段就提前准备好必要的资源和服务支持,从而保障后续应用程序调用 API 接口请求访问物理设备时不致于因缺少依赖关系而崩溃退出。 #### 确认 CUDA 工具链配置无误 对于那些计划利用 Nvidia 提供的强大计算能力来进行科学运算或者机器学习训练任务的朋友来说,除了要保证基础层面上的驱动适配之外,还必须得留意上层应用环境搭建是否完善到位。特别是针对采用 C/C++ 编程语言开发的应用场景而言,往往离不开借助 NVCC 这样的专用编译器来进行代码转换工作。因此有必要核查一下本地环境中关于路径变量设置以及库函数链接等方面是否存在遗漏之处[^4]。 例如可以检查 `/etc/profile.d/cuda.sh` 中有关 PATH 和 LD_LIBRARY_PATH 变量定义部分的内容是否指向正确的目录位置,并且重启 shell 终端使修改生效后再试一次看看问题能否得到改善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三只佩奇不结义

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值