二叉树中为什么n(0) = n(2) +1

一、什么是二叉树

1、二叉树基本形态
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:

  • 每个结点最多有两棵子树,即二叉树不存在度大于 2 的结点。
  • 二叉树的子树有左右之分,其子树的次序不能颠倒,因此二叉树是有序树。

2、两种特殊的二叉树

  • 满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2k-1,则它就是满二叉树。
  • 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

在这里插入图片描述
3、二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i-1(i>0)个结点
  2. 若规定只有根节点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2k-1(k>=0)
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
  4. 具有n个结点的完全二叉树的深度k为long2(n+1)上取整
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
    若i>0,双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
    若2i+1<=n,左孩子序号:2i+1;否则无左孩子
    若2i+2<=n,右孩子序号:2i+2;否则无右孩子

二、n(0) = n(2) +1

n(0) 表示度为0的结点, n(1) 表示度为1的结点,n(2) 表示度为2的结点

  • 假设该二叉树总共有n个结点(n=n0+n1+n2),则该二叉树总共会有n-1条边
  • 度为2的结点会延伸出两条边,同理,度为1的结点会延伸出一条边,则可列公式:n-1 = 2 * n(2) + 1*n(1)
  • 合并两个式子可得:2 * n(2) + 1*n(1) + 1 =n(0) + n(1) + n(2) ,则计算可知 n(0)=n(2)+1
    在这里插入图片描述

例子:

假设一棵完全二叉树中总共有1000个节点,则该二叉树中___500__个叶子节点,__500___个非叶子节点,___1__个节点只有左孩子,___0__个只有右孩子。

关键:根据最后一层的节点数,求出倒数第二层中父节点的个数,倒数第二层节点总数-父节点个数=倒数第二层n(0) ;倒数第二层n(0)+最后一层n(0)=整个二叉树的n(0)

  • 1000个节点的完全二叉树有10层(long2(n+1)上取整)(层数从1开始);1-9层是满二叉树,前九层共有511个节点 (2n-1) ,说明第10层只有489个节点,它们度为0.
  • n(2)=n(0)-1,只需把度为0的节点数算出来就可以算出度为2的节点数.
  • 第10层只有489个节点,每两个一组,单个的也算一组,共占用第九层的父节点245个(489/2+1)
  • 第9层共256个节点(2i-1),则第九层上度为0的节点个数为256-245=11个
  • 第9层有256-244-1=11个0度节点、第10层有489个0度节点,整个二叉树共有489+11=500个度为0的节点,所以这棵二叉树中度为2的节点数为n2=n0-1=500-1=499

三、前中后遍历

遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问
在这里插入图片描述
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:

  1. NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点—>根的左子树—>根的右子树。
  2. LNR:中序遍历(Inorder Traversal)——根的左子树—>根节点—>根的右子树。
  3. LRN:后序遍历(Postorder Traversal)——根的左子树—>根的右子树—>根节点。

技巧:拿着中序遍历的结果,对比前序就看根左右,对比后序就看根右左

在这里插入图片描述

### 回答1: 可以使用递归的方式来验证二叉树的性质3。具体步骤如下: 1. 定义一个函数count(node),用于计算以node为根节点的子树中的终端结点数和度数为2的结点数。 2. 在count函数中,首先判断node是否为空,如果为空则返回(,)。 3. 如果node不为空,则递归计算其左子树和右子树的终端结点数和度数为2的结点数,分别记为(n_l, n2_l)(n_r, n2_r)。 4. 计算以node为根节点的子树中的终端结点数和度数为2的结点数,分别为n=n_l+n_r+1和n2=n2_l+n2_r+1。 5. 判断n是否等于n2,如果相等则返回True,否则返回False。 下面是Python代码实现: ```python class TreeNode: def __init__(self, val=, left=None, right=None): self.val = val self.left = left self.right = right def count(node): if not node: return (, ) n_l, n2_l = count(node.left) n_r, n2_r = count(node.right) n = n_l + n_r + 1 n2 = n2_l + n2_r + 1 return (n, n2) def is_property_3(root): n, n2 = count(root) return n == n2 # 测试代码 root = TreeNode(1, TreeNode(2, TreeNode(4), TreeNode(5)), TreeNode(3)) print(is_property_3(root)) # True root = TreeNode(1, TreeNode(2, TreeNode(4), TreeNode(5)), TreeNode(3, TreeNode(6))) print(is_property_3(root)) # False ``` ### 回答2: 题目所要求的是验证二叉树的性质3,该性质表明了对于一棵二叉树,当它的终端节点数目为n0,度数为2的节点数目为n2,则有n0=n2+1。我们需要编写程序,验证任何一棵输入的二叉树是否满足该性质。 我们可以通过递归来实现对二叉树的遍历,然后统计终端节点数和度数为2的节点数。对于遍历的过程,我们可以采用前序遍历、中序遍历、后序遍历等方式,这里我们以前序遍历为例。 我们可以先编写一个函数来统计终端节点数目和度数为2的节点数目,该函数接受一个二叉树的根节点作为参数,返回一个元组:(n0, n2)。 具体实现时,我们可以在递归函数中,对于每一个节点,判断当前节点是否为终端节点或度数为2的节点。如果是终端节点,则n0=n0+1;如果是度数为2的节点,则n2=n2+1。同时,我们需要对该节点的左右子树进行递归,以便能够统计到所有节点的信息。 接着,我们再编写一个主函数,在该函数中输入一棵二叉树,然后调用统计函数,得到返回值,并比较n0和n2+1是否相等,从而验证二叉树是否满足性质3。 最后,我们需要注意的是,输入的二叉树应该是一个合法的二叉树,即不允许有度数大于2的节点存在。如果有这样的节点,程序将无法正常运行。 综上所述,我们可以采用递归的方式来编写程序验证二叉树的性质3,通过编写主函数和统计函数来实现该程序。 ### 回答3: 二叉树是一种重要的数据结构,在计算机科学中应用广泛。验证二叉树的性质是计算机科学中的一个重要问题。本文将介绍如何编写程序来验证二叉树的性质3。二叉树的性质3指的是对于任意一棵二叉树,如果该树的终端节点数为n0,而其度数为2的节点数为n2,则n0=n2+1。 在编写程序之前,我们需要了解二叉树的性质。二叉树是一种树形结构,其每个节点最多有两个子节点。其中,左子节点的值小于父节点的值,右子节点的值大于父节点的值。根据这个性质,我们可以编写以下程序来验证二叉树的性质3。 首先,我们需要在程序中定义一个二叉树数据结构,包含左子节点、右子节点、节点值等属性。接着,我们可以通过递归遍历二叉树来计算n0和n2的值。具体步骤如下: 1. 递归遍历二叉树,统计n0和n2的值。n0表示终端节点的数量,n2表示度数为2的节点数量。 2. 如果当前节点是终端节点,则将n0的值加1。如果当前节点的度数为2,则将n2的值加1。 3. 继续向下递归遍历左子树和右子树,以便计算n0和n2的值。 4. 在递归的过程中,判断n0是否等于n2+1。如果等于,则表示此二叉树符合性质3;如果不等于,则不符合该性质。 总结来说,验证二叉树的性质3需要编写递归程序,统计二叉树的终端节点数和度数为2的节点数,最后判断n0是否等于n2+1。这个程序的时间复杂度是O(n),其中n为二叉树的节点数量。该程序可以应用于验证二叉树的性质3,保证二叉树的正确性和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值