题目
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
示例 3
输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
示例 4
输入:points = [[1,2]]
输出:1
示例 5
输入:points = [[2,3],[2,3]]
输出:1
题解
- 首先需要找出重叠的区间;
- 即将points根据每个数组的points[i][1]进行排序,此时points中的每个区间都按照右边界从小到大排序;
- 只要对比每个边界的左边界是否大于上一个区间的右边界,若大于,则处于这两个边界的气球需要分别使用两支箭引爆
- 该问题其实就是计算有多少个非重叠区间
时间复杂度:O(nlogn),其中 n 是数组 points 的长度。排序的时间复杂度为 =O(nlogn),对所有气球进行遍历并计算答案的时间复杂度为 =O(n),其在渐进意义下小于前者,因此可以忽略。
空间复杂度:O(logn),即为排序需要使用的栈空间。
var findMinArrowShots = function (points) {
if (!points.length) {
return 0
}
points.sort((a, b) => a[1] - b[1])
let count = 1, right = points[0][1]
for (let point of points) {
if (point[0] > right) {
right = point[1]
count++
}
}
return count
};