[C/C++]背包问题

问题1:0-1背包问题。

给定 n n n 个重量为 { w 1 w_{1} w1, w 2 w_{2} w2,…, w n w_{n} wn },价值 { v 1 v_{1} v1, v 2 v_{2} v2,…, v n v_{n} vn }的物品,给定最大载重 T T T 的背包,每件物品最多装一件,要求背包中的物品价值最大。
0-1表示每件物品最多使用一次。

思路:
我们使用 f ( i , j ) f(i, j) f(i,j) 表示背包的载量为 j j j 时,对于第 i i i 个物品,包内的价值。
基于递归的思想,对于 f ( i , j ) f(i, j) f(i,j) 我们有2种途径得到,但是要取最大值:

  1. 假设不装第 i i i 件物品,则此时的包内价值 f ( i − 1 , j ) f(i-1, j) f(i1,j)
  2. 假设装第 i i i 件物品,则此时的包内价值 v i + f ( i − 1 , j − w i ) v_{i}+f(i-1, j-w_{i}) vi+f(i1,jwi)
    因此我们得到状态转移方程:
    f ( i , j ) = m a x { f ( i − 1 , j ) , v i + f ( i − 1 , j − w i ) } f(i, j)=max \{ f(i-1, j),v_{i}+f(i-1, j-w_{i})\} f(i,j)=max{f(i1,j),vi+f(i1,jwi)}

代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

//原始的思路
int Bag01(vector<int> &w, vector<int> &v, int T )  //weight, value, capacity
{
	int n = w.size();
	if (n == 0)
		return 0;
	//二维数组
	vector<vector<int>> dp(n, vector<int> (T + 1, 0));
	//初始化第一行
	for (int j = 0; j <= T; j++)
	{
		dp[0][j] = w[0] <= j ? v[0] : 0;
	}
	for (int i = 1; i < n; i++)
	{
		for (int j = 0; j <= T; j++)
		{
			dp[i][j] = dp[i - 1][j];
			if (w[i] <= j)
			{
				dp[i][j] = max(dp[i - 1][j], v[i] + dp[i - 1][j - w[i]]);
			}			
		}
	}
	return dp[n-1][T];
}

//0-1背包,优化,采用1维数组
int Bag01_1(vector<int> &w, vector<int> &v, int T)  //weight, value, capacity
{
	int n = w.size();
	if (n == 0) return 0;
	//一维数组
	vector<int> dp(T + 1, 0);
	for (int i = 0; i < n; i++)
	{
		for (int j = T; j >= w[i]; j--)
		{
			dp[j] = max(dp[j], dp[j - w[i]] + v[i] );			
		}
	}
	return dp[T];
}

int main()
{
	vector<int> w({ 2,7,5,6,9 });
	vector<int> v({ 4,7,6,8,10 });
	int T = 18;
	int value = Bag01(w, v, T);
	return 0;
}

结果:
在这里插入图片描述

问题2:完全背包问题。

给定 n n n 个重量为 { w 1 w_{1} w1, w 2 w_{2} w2,…, w n w_{n} wn },价值 { v 1 v_{1} v1, v 2 v_{2} v2,…, v n v_{n} vn }的物品,给定最大载重 T T T 的背包,每件物品可以装任意件,要求背包中的物品价值最大。

思路:
与0-1背包问题不同的是,此处每个物品可以装任意个了,即我们需要多设一层循环,在载量为 j j j 时,对于物品 i i i ,我可以有 k k k 种选择, k k k 满足 0 < = k ∗ w [ i ] < = j 0<=k*w[i]<= j 0<=kw[i]<=j
此时的状态转移方程:
f ( i , j ) = m a x { f ( i − 1 , j ) , k ∗ v i + f ( i − 1 , j − k ∗ w i ) } f(i, j)=max \{ f(i-1, j),k*v_{i}+f(i-1, j-k*w_{i})\} f(i,j)=max{f(i1,j),kvi+f(i1,jkwi)} , 其中 0 < = k ∗ w [ i ] < = j 0<=k*w[i]<= j 0<=kw[i]<=j

代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

//原始的思路
int BagComplete(vector<int> &w, vector<int> &v, int T)  //weight, value, capacity
{
	int n = w.size();
	if (n == 0)
		return 0;
	//二维数组
	vector<vector<int>> dp(n, vector<int>(T + 1, 0));
	//初始化第一行
	for (int j = 0; j <= T; j++)
	{
		for (int k = 1; k*w[0] <= j; k++)
		{
			dp[0][j] = k*v[0];
		}	
	}
	for (int i = 1; i < n; i++)
	{
		for (int j = 0; j <= T; j++)
		{
			dp[i][j] = dp[i - 1][j];
			for(int k=1;k*w[i] <=j;k++) //加一层循环
			{
				dp[i][j] = max(dp[i - 1][j], k*v[i] + dp[i - 1][j - k*w[i]]);
			}
		}
	}
	return dp[n - 1][T];
}

//优化完全背包
int BagComplete_1(vector<int> &w, vector<int> &v, int T)
{
	int n = w.size();
	if (n == 0) return 0;
	vector<int> dp(T + 1, 0);
	for (int i = 0; i < n; i++)
	{
		for (int j = w[i]; j <= T; j++)
		{
			dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
		}
	}
	return dp[T];
}

int main()
{
	vector<int> w({ 2,7,5,6,9 });
	vector<int> v({ 4,7,6,8,10 });
	int T = 18;
	int value = BagComplete(w, v, T);
	int value_1 = BagComplete_1(w, v, T);
	return 0;
}

结果:
在这里插入图片描述

总结:
首先想想为什么 01 背包中要按照 j j j 递减的次序来循环?

首先强调一个认知,若对第 i i i 次循环中的状态 f ( i , j ) f(i, j) f(i,j), 若其经过状态转移公式计算,则 f ( i , j ) f(i, j) f(i,j)表示第 i i i 次状态;若未经过计算,则表示 第 i − 1 i-1 i1 次的状态。

j j j 递减是为了保证第 i i i 次循环中的状态 f ( i , j ) f(i, j) f(i,j) 是由状态 f ( i − 1 , j − w [ i ] ) f( i-1, j - w[i]) f(i1,jw[i]) 递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第 i i i 件物品”这件策略时,依据的是一个绝无已经选入第 i i i 件物品的子结果 f ( i − 1 , j − w [ i ] ) f( i-1, j - w[i]) f(i1,jw[i])

完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第 i i i 种物品”这种策略时,却正需要一个可能已选入第 i i i 种物品的子结果 f ( i , j − w [ i ] ) f( i , j - w[i]) f(i,jw[i]) ,所以就可以并且必须采用 j j j 递增的顺序循环。这就是这个简单的程序为何成立的道理。

参考链接:
[1] 跑码场:彻底理解0-1背包问题
[2] 弗兰克的猫:【动态规划】完全背包问题

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值