常用求导公式

( f ( x ) ± g ( x ) ) ′ = f ′ ( x ) ± g ′ ( x ) [ c f ( x ) ] ′ = c f ′ ( x ) ( f ( x ) × g ( x ) ) ′ = f ′ ( x ) g ( x ) + g ′ ( x ) f ( x ) ( f ( x ) g ( x ) ) ′ = f ′ ( x ) g ( x ) − g ′ ( x ) f ( x ) g 2 ( x ) ( g ( x ) ≠ 0 ) \begin{aligned} &(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)\\ &[c f(x)]^{\prime}=c f^{\prime}(x)\\ &(f(x) \times g(x))^{\prime}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\\ &\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g^{2}(x)}(g(x) \neq 0) \end{aligned} (f(x)±g(x))=f(x)±g(x)[cf(x)]=cf(x)(f(x)×g(x))=f(x)g(x)+g(x)f(x)(g(x)f(x))=g2(x)f(x)g(x)g(x)f(x)(g(x)=0)
( c ) ′ = 0 ( x a ) ′ = a x a − 1 ( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( tan ⁡ x ) ′ = 1 cos ⁡ 2 x ( cot ⁡ x ) ′ = − 1 sin ⁡ 2 x ( ln ⁡ x ) ′ = 1 x ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0  且  a ≠ 1 )  在机器学习中常用它的简化形式: ( log ⁡ x ) ′ = 1 x ( e x ) ′ = e x ( a x ) ′ = a x ln ⁡ a ( a > 0 a ≠ 1 ) ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot ⁡ x ) ′ = − 1 1 + x 2 \begin{aligned} &(c)^{\prime}=0\\ &\left(x^{a}\right)^{\prime}=a x^{a-1}\\ &(\sin x)^{\prime}=\cos x\\ &(\cos x)^{\prime}=-\sin x\\ &(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}\\ &(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}\\ &(\ln x)^{\prime}=\frac{1}{x}\\ &\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} \quad(a>0 \text { 且 } a \neq 1)\\ \text { 在机器学习中常用它的简化形式:} \\ &\left(\log x\right)^{\prime}=\frac{1}{x} \\ &\left(e^{x}\right)^{\prime}=e^{x}\\ &\left(a^{x}\right)^{\prime}=a^{x} \ln a \quad(a>0 \quad a \neq 1)\\ &(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\\ &(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\\ &(\arctan x)^{\prime}=\frac{1}{1+x^{2}}\\ &(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \end{aligned}  在机器学习中常用它的简化形式:(c)=0(xa)=axa1(sinx)=cosx(cosx)=sinx(tanx)=cos2x1(cotx)=sin2x1(lnx)=x1(logax)=xlna1(a>0  a=1)(logx)=x1(ex)=ex(ax)=axlna(a>0a=1)(arcsinx)=1x2 1(arccosx)=1x2 1(arctanx)=1+x21(arccotx)=1+x21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ROOOOOOM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值