(
f
(
x
)
±
g
(
x
)
)
′
=
f
′
(
x
)
±
g
′
(
x
)
[
c
f
(
x
)
]
′
=
c
f
′
(
x
)
(
f
(
x
)
×
g
(
x
)
)
′
=
f
′
(
x
)
g
(
x
)
+
g
′
(
x
)
f
(
x
)
(
f
(
x
)
g
(
x
)
)
′
=
f
′
(
x
)
g
(
x
)
−
g
′
(
x
)
f
(
x
)
g
2
(
x
)
(
g
(
x
)
≠
0
)
\begin{aligned} &(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)\\ &[c f(x)]^{\prime}=c f^{\prime}(x)\\ &(f(x) \times g(x))^{\prime}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\\ &\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{g^{2}(x)}(g(x) \neq 0) \end{aligned}
(f(x)±g(x))′=f′(x)±g′(x)[cf(x)]′=cf′(x)(f(x)×g(x))′=f′(x)g(x)+g′(x)f(x)(g(x)f(x))′=g2(x)f′(x)g(x)−g′(x)f(x)(g(x)=0)
(
c
)
′
=
0
(
x
a
)
′
=
a
x
a
−
1
(
sin
x
)
′
=
cos
x
(
cos
x
)
′
=
−
sin
x
(
tan
x
)
′
=
1
cos
2
x
(
cot
x
)
′
=
−
1
sin
2
x
(
ln
x
)
′
=
1
x
(
log
a
x
)
′
=
1
x
ln
a
(
a
>
0
且
a
≠
1
)
在机器学习中常用它的简化形式:
(
log
x
)
′
=
1
x
(
e
x
)
′
=
e
x
(
a
x
)
′
=
a
x
ln
a
(
a
>
0
a
≠
1
)
(
arcsin
x
)
′
=
1
1
−
x
2
(
arccos
x
)
′
=
−
1
1
−
x
2
(
arctan
x
)
′
=
1
1
+
x
2
(
arccot
x
)
′
=
−
1
1
+
x
2
\begin{aligned} &(c)^{\prime}=0\\ &\left(x^{a}\right)^{\prime}=a x^{a-1}\\ &(\sin x)^{\prime}=\cos x\\ &(\cos x)^{\prime}=-\sin x\\ &(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}\\ &(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}\\ &(\ln x)^{\prime}=\frac{1}{x}\\ &\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} \quad(a>0 \text { 且 } a \neq 1)\\ \text { 在机器学习中常用它的简化形式:} \\ &\left(\log x\right)^{\prime}=\frac{1}{x} \\ &\left(e^{x}\right)^{\prime}=e^{x}\\ &\left(a^{x}\right)^{\prime}=a^{x} \ln a \quad(a>0 \quad a \neq 1)\\ &(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\\ &(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\\ &(\arctan x)^{\prime}=\frac{1}{1+x^{2}}\\ &(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \end{aligned}
在机器学习中常用它的简化形式:(c)′=0(xa)′=axa−1(sinx)′=cosx(cosx)′=−sinx(tanx)′=cos2x1(cotx)′=−sin2x1(lnx)′=x1(logax)′=xlna1(a>0 且 a=1)(logx)′=x1(ex)′=ex(ax)′=axlna(a>0a=1)(arcsinx)′=1−x21(arccosx)′=−1−x21(arctanx)′=1+x21(arccotx)′=−1+x21
常用求导公式
于 2020-04-18 15:47:25 首次发布