基于系统性风险角度的基金资产配置策略分析

原创声明:未经作者允许,不得转载

免费条件:粉丝数、获赞数、收藏数,三者其一超过500
个人公众号

题目来源:2020年_51数学建模_B题 (暂时只更到问题1)

        该题是个组合优化问题。老规矩,先上一张问题1的结果图。

图1 各公司间资产配置策略的相似性

1. 问题1解析

        附件1给出了各公司购买的股票信息:持股总市值和持股总量。由两个数据我们可以计算出每种股票的单价。问题1要求10家公司之间的资产配置策略的相似性,这个相似性就是公司购买了哪种哪种股票,每种股票购买了多少。公司购买了多少某种股票,这就是附件1中的持股总量。那么,公司购买了哪种哪种股票,这该怎么判断呢?
        我们的思路是根据股票的单价,把所有股票划分为不同类型。在划分前,我们先利用箱图看下所有股票的单价分布情况,如图2所示。

图2 股票价格分布
        从图2左图可以看出,有些公司的箱图确实很相似,如公司H、I、J。从图2右图可以看出 ,异常值(小圆圈)可以分为2类,分别为200-600之间、1200。我们把单价为1200的股票作为1类,而我们把200-600的下限改为150,这是因为左图中大部分公式的上边界在150附近。左图中的大部分公司的下四分位点在80附近,所以我们把(80,150)作为一类。(0,80)采取了等分,间隔为20,因为这部分数据较为集中。综上,股票的价格大体上可以分为(0,80)、(80,150),(150,600),(600,1200)。当然,以上区间可以自己定义,上述只做参考,定义的标准就是异常值、四分位数、中数等。

        下面是图2的实现代码。

# -*- coding: utf-8 -*-

import pandas as pd
import matplotlib.pyplot as plt
from collections import Counter
import numpy as np
from scipy.spatial.distance import pdist
import seaborn as sns

file_path = r'G:\数学建模\题目及原数据\五一数学建模\2020\2020_51MCM_B题\附件1.xlsx'
data = pd.read_excel(file_path)

data['股价'] = data['持股总市值(万元)'] / data['持股总量(万股)']

dic = dict()
for company_name in Counter(data['公司名称']).keys():
    lst = data[data['公司名称'] == company_name]['股价'].tolist()
    dic[company_name[-1]] = lst

df = pd.DataFrame(dic)
plt.subplot(121)
df.boxplot()
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.grid(linestyle="--", alpha=0.3)
plt.title('各公司购买股票类型分析')
plt.ylabel('股价(单位:元)')

stock_name_lst = []
for stock_name in Counter(data['股票名称']).keys():
    stock_name_lst.append(data[data['股票名称'] == stock_name]['股价'].mean())

plt.subplot(122)
plt.boxplot(stock_name_lst)
plt.grid(linestyle="--", alpha=0.3)
plt.ylabel('股价(单位:元)')
plt.title('股票单价分布')
# plt.show()
plt.savefig(r'C:\Users\Desktop\tt.png')

        根据上述分析,我们把股票根据单价划分为以下几种: X ≤ 20 X\leq20 X20 20 < X ≤ 40 20\lt X \leq40 20<X40 40 < X ≤ 60 40\lt X \leq60 40<X60 60 < X ≤ 80 60\lt X \leq80 60<X80 80 < X ≤ 150 80\lt X \leq150 80<X150 150 < X ≤ 600 150\lt X \leq600 150<X600 600 < X 600\lt X 600<X。我们利用余弦相似性来计算公司之间的资产配置策略的相似度。我们定义一个向量,大小为7。每一位表示一种股票,每一位的值表示购买该种股票的数量,如: v = [ 1 , 2 , 3 , 4 , 5 , 6.7 ] v=[1,2,3,4,5,6.7] v=[1,2,3,4,5,6.7],他表示第一种股票购买的数量为1,第二种股票购买的数量为2,依次类推。最后,我们用热力图来呈现结果,如图1所示。
该部分的实现代码如下。

# -*- coding: utf-8 -*-

import pandas as pd
import matplotlib.pyplot as plt
from collections import Counter
import numpy as np
from scipy.spatial.distance import pdist
import seaborn as sns

file_path = r'G:\数学建模\题目及原数据\五一数学建模\2020\2020_51MCM_B题\附件1.xlsx'
data = pd.read_excel(file_path)

data['股价'] = data['持股总市值(万元)'] / data['持股总量(万股)']

price_lst = [20, 40, 60, 80, 150, 600]

asset_allocation_dic = dict()
for company_name in Counter(data['公司名称']).keys():
    info_lst = [0] * 7  # 资产配置信息
    df_tmp = data[data['公司名称'] == company_name]

    for i in range(len(info_lst)):
        if i == 0:
            info_lst[i] = df_tmp[df_tmp['股价'] <= 20]['持股总量(万股)'].sum()
        elif i == 1:
            info_lst[i] = df_tmp[(df_tmp['股价'] > price_lst[i - 1]) & (df_tmp['股价'] <= price_lst[i])]['持股总量(万股)'].sum()
        elif i == 6:
            info_lst[i] = df_tmp[df_tmp['股价'] > 600]['持股总量(万股)'].sum()

    asset_allocation_dic[company_name] = info_lst

# 计算相似性
similarity_arr = np.zeros((10, 10))
company_name_lst = list(Counter(data['公司名称']).keys())
print(company_name_lst)
for i in range(10):
    for j in range(10):
        v1 = asset_allocation_dic[company_name_lst[i]]
        v2 = asset_allocation_dic[company_name_lst[j]]
        similarity_arr[i][j] = 1 - pdist(np.vstack([v1, v2]), 'cosine')
# 画图
plt.figure()
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
ax = sns.heatmap(similarity_arr, cmap='Reds')
plt.title('10家基金公司之间资产配置策略的相似性', size=16)
plt.xlabel('公司名称')
plt.ylabel('公司名称')
# plt.show()
plt.savefig(r'C:\Users\10102\Desktop\tt.png')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

适当喝点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值