量化投资:寻找Alpha

确定投资范围

在这里插入图片描述

定义投资范围是制定投资策略的重要一步,它确定了投资者可以选择的资产和市场。下面是定义投资范围的一些步骤:

  1. 投资目标:首先明确你的投资目标。确定你希望通过投资实现的长期目标,例如资本增值、收益稳定性、风险控制等。

  2. 投资策略类型:确定你的投资策略类型,例如价值投资、成长投资、指数投资、技术分析等。这将有助于缩小投资范围,并选择适合的资产类别。

  3. 资产类别:确定你打算投资的资产类别。常见的资产类别包括股票、债券、大宗商品、房地产、外汇等。根据你的投资目标和风险承受能力,选择适当的资产类别。

  4. 市场地区:确定你打算投资的市场地区。你可以选择投资国内市场、国际市场或特定的地区市场。考虑市场的规模、流动性、政治经济环境和法律要求等因素。

  5. 行业和部门:根据你对行业和部门的了解和兴趣,确定你打算投资的行业和部门。这可以帮助你缩小投资范围,并专注于你熟悉和感兴趣的领域。

  6. 其他限制和筛选条件:考虑任何其他限制或筛选条件,如投资风格、市值范围、可投资工具的特定要求等。这些条件可以根据你的偏好和策略要求来定义投资范围。

  7. 风险管理:在定义投资范围时,要考虑风险管理的因素。确定你对风险的容忍度,并选择与你的风险承受能力相匹配的投资范围。

  8. 考虑投资限制和合规要求:了解适用的投资限制和合规要求。这可能包括监管机构的规定、法律法规和投资政策的限制等。

  9. 定期评估和调整:投资范围并非固定不变,它应该根据市场环境、投资目标和策略要求进行定期评估和调整。随着时间的推移,你可能需要扩大或缩小投资范围,以适应市场变化和投资目标的变化。

在定义投资范围时,重要的是明确投资目标、理解自己的风险承受能力,并根据适用的要求和限制来选择合适的资产类别、市场地区和行业部门。这将帮助你构建一个与你的投资策略相一致的投资组合。

设计Alpha 因子

设计Alpha因子,也被称为Alpha信号生成,是量化金融中创建盈利交易策略的关键步骤。Alpha因子代表了可用于识别潜在市场异常或低效的预测信号。以下是设计Alpha因子的一些步骤:

  1. 确定假设:首先制定一个关于市场行为或存在的基本关系的假设。这个假设应该基于你对市场的理解、金融理论或实证观察。

  2. 选择数据源:确定提供测试假设所需信息的数据源。这可以包括历史价格数据、基本面数据、经济指标、新闻情绪或任何其他相关数据集。

  3. 数据清洗和预处理:清洗和预处理数据,以删除任何异常值、错误或缺失值。确保数据在分析中是一致和可靠的。

  4. 特征工程:将原始数据转换为有意义的特征,以捕捉你的假设的核心。这可以包括计算、比率、聚合或任何其他数学或统计操作。特征工程是一个迭代的过程,因此尝试不同的转换和组合,找到最有效的特征。

  5. 测试预测能力:通过进行统计测试或使用机器学习技术评估每个特征的预测能力。常见的方法包括回归分析、时间序列分析、相关分析或构建决策树、随机森林或神经网络等预测模型。目标是识别与未来收益或其他相关目标变量存在显著关系的特征。

  6. 量化和排序Alpha因子:一旦确定了预测特征,量化它们的强度和方向性。你可以根据其统计显著性、影响大小或其他策略特定的标准,为每个因子分配权重或排序。

  7. 投资组合构建:将多个Alpha因子组合成单个交易策略。确定如何合并或加权这些因子以创建复合Alpha信号。考虑多样化、风险管理和其他投资组合构建技术,以优化策略的表现。

  8. 回测和评估:使用历史数据回测基于Alpha因子的交易策略,评估其表现。使用适当的绩效指标,如风险调整收益、夏普比率、信息比率或回撤分析。根据回测结果进行调整和改进策略。

  9. 实施和实盘交易:如果回测结果令人满意,在实盘交易

中实施基于Alpha因子的策略。监控策略的表现、风险敞口,并根据市场情况进行调整。

  1. 持续研究和改进:Alpha因子并非静态的,可能随时间失去效力。持续研究、监测和改进你的因子,以适应不断变化的市场动态并发现新的Alpha来源。

请记住,设计Alpha因子需要金融知识、统计技能和领域专业知识的结合。这是一个迭代的过程,涉及不断的测试、评估和改进。

优化投资组合涉及寻找最佳资产配置

优化投资组合涉及寻找最佳资产配置,既能最大化预期收益,又能最小化风险,或实现特定的投资目标。以下是优化投资组合的一些步骤:

  1. 确定投资目标:明确定义你的投资目标,如最大化收益、达到目标风险水平或平衡风险和回报。这将指导优化过程,并帮助确定适当的权衡。

  2. 确定风险承受能力:评估你的风险承受能力,即你愿意承担的风险程度。这将影响资产配置和风险管理决策。

  3. 资产配置:确定投资组合中的资产最佳配置。这涉及确定对不同资产类别(如股票、债券、现金和其他投资)分配的权重。考虑历史表现、预期收益、相关性和分散效益等因素。

  4. 风险管理:采用风险管理技术来控制和管理投资组合的风险。这可能包括在不同资产类别、行业和地理区域之间进行分散,以及使用止损订单或期权策略等风险管理工具。

  5. 有效前沿分析:利用有效前沿的概念,表示在给定风险水平下提供最高预期收益或在给定收益水平下提供最低风险的投资组合集合。这种分析有助于确定实现所需风险-回报平衡的最佳资产组合。

  6. 投资组合优化模型:利用定量模型和优化技术找到最佳投资组合配置。这些模型考虑预期收益、风险、相关性、约束条件和投资目标等因素。常见的优化技术包括均值-方差优化、风险平价优化和蒙特卡洛模拟。

  7. 敏感性分析:进行敏感性分析,评估输入假设变化(如预期收益或相关性)对优化投资组合的影响。这有助于识别可能影响投资组合表现的潜在脆弱性或备选情景。

  8. 定期监测和再平衡:定期监测投资组合的表现,并根据需要调整资产配置。市场状况和资产表现可能导致投资组合偏离最佳配置。再平衡包括买入或卖出资产,使投资组合

恢复到预期的配置。

  1. 考虑交易成本和约束条件:考虑交易成本、流动性限制、税务影响以及可能影响投资组合优化过程的特定约束或要求。这些因素会影响优化投资组合的可行性和实际操作性。

  2. 持续审查和调整:投资组合优化是一个持续的过程。定期审查投资组合的表现、市场状况和投资目标。根据市场动态或投资目标或风险承受能力的任何变化,调整优化方法。

需要注意的是,投资组合优化涉及权衡,在个体偏好、风险承受能力和市场条件下,最佳配置将有所不同。

如何构造价值因子

获得价值因子可以采取多种方法,以下是一些常见的途径:

  1. 基于财务指标筛选:价值因子通常与财务指标相关,例如市盈率、市净率、股息率等。您可以通过筛选具有较低市盈率或市净率等指标的股票来构建价值投资组合。这可以通过财务数据提供商、金融网站或投资研究平台进行筛选和策略构建。

  2. 使用因子模型:因子模型是一种统计工具,可以通过分析历史数据来确定影响股票回报的因子。使用因子模型,您可以识别和提取与价值相关的因子。常用的因子模型包括巴里-罗森伯格模型(Barra-Rosenberg Model)、法玛模型(Fama-French Model)等。这些模型提供了一种定量的方法来衡量和获取价值因子。

     实际上,我应该提到的是 "巴里-罗森伯格风险模型"(Barra-Rosenberg Risk Model),该模型用于衡量股票和投资组合的风险。
     巴里-罗森伯格风险模型是一种广泛应用于风险管理和投资组合构建的因子模型。它旨在分解投资组合的风险来源,并提供一套因子来描述不同因素对于股票收益和风险的影响。
     该模型基于资产定价理论和统计学原理,将股票的预期收益和风险分解为多个因子的组合。这些因子可以包括行业因子、市场因子、风格因子等,以及其他可以解释股票收益波动的因素。
    

    巴里-罗森伯格风险模型通常基于大量的历史数据,并使用统计技术(如回归分析)来估计不同因子对股票收益和风险的贡献程度。通过应用该模型,投资者可以更好地了解其投资组合的风险特征,并根据这些因子进行风险管理和投资决策。
    此外,巴里-罗森伯格风险模型还可用于构建风险平衡的投资组合。通过根据不同因子的敞口来平衡投资组合的风险,可以实现更为稳定和多样化的投资策略。
    需要指出的是,巴里-罗森伯格风险模型是一种复杂的模型,其具体实现和因子配置可能因公司、机构或个人而异。准确应用该模型通常需要专业的数据和分析工具,以及对模型的深入理解和适应能力。

  3. 使用专业指数和基金:许多专业指数和基金追踪或代表了价值因子。例如,一些市场指数基金或ETF(交易所交易基金)专注于追踪价值股票指数,这些指数通常以价值因子为依据进行股票选取和权重调整。通过投资这些指数基金,您可以获得相对容易和便捷的价值因子投资策略。

  4. 使用量化投资策略:量化投资策略利用数学和统计模型来识别和利用市场因子,包括价值因子。这可以包括使用计算机程序和算法进行股票选择和投资组合构建。量化投资策略通常基于大量历史数据和统计分析,以寻找市场中的价值机会。

如何寻找质量因子

盈利能力指标:关注公司的盈利能力,包括净利润率、毛利润率、净资产收益率等。较高的盈利能力通常被视为质量较高的公司。

财务稳定性指标:考察公司的财务稳定性和偿债能力,例如资产负债比率、流动比率、利息保障倍数等。较低的财务风险和较强的偿债能力可能意味着较高的质量。

现金流量指标:关注公司的现金流量情况,包括自由现金流、经营现金流、现金流量回报率等。较高的现金流量通常被视为质量较高的公司。

盈利质量指标:考察公司的盈利质量和财务透明度,例如会计准则的合规性、审计意见、盈余操纵风险等。

偿付能力指标:关注公司的支付能力和债务承担能力,包括利息支付比率、债务与资本比率等。较高的偿付能力通常被视为质量较高的公司。

成长稳定性指标:考察公司的成长稳定性和可持续性,包括收入和盈利的增长率、市场份额的稳定性等。

其他指标:根据具体情况,还可以考虑其他与质量相关的指标,如公司治理结构、产品质量、品牌价值等。

How to use the Kalman Filter and Wavelets

Imports & Settings

import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

from datetime import datetime
import itertools

import pandas as pd
import pandas_datareader.data as web
from pykalman import KalmanFilter
import pywt

import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings('ignore')
sns.set_style('whitegrid')
idx = pd.IndexSlice

Get Data

The assets.h5 store can be generated using the the notebook create_datasets in the data directory in the root directory of this repo for instruction to download the following dataset.
We load the Quandl stock price datasets covering the US equity markets 2000-18 using pd.IndexSlice to perform a slice operation on the pd.MultiIndex, select the adjusted close price and unpivot the column to convert the DataFrame to wide format with tickers in the columns and timestamps in the rows:
Set data store location:

DATA_STORE = '../data/assets.h5'
with pd.HDFStore(DATA_STORE) as store:
    sp500 = store['sp500/stooq'].loc['2009': '2010', 'close']

Kalman Filter

Configuration

kf = KalmanFilter(transition_matrices = [1],
                  observation_matrices = [1],
                  initial_state_mean = 0,
                  initial_state_covariance = 1,
                  observation_covariance=1,
                  transition_covariance=.01)

Estimate the hidden state

state_means, _ = kf.filter(sp500)

Compare with moving average

sp500_smoothed = sp500.to_frame('close')
sp500_smoothed['Kalman Filter'] = state_means
for months in [1,2,3]:
    sp500_smoothed[f'MA ({months}m)'] = sp500.rolling(window=months*21).mean()

ax = sp500_smoothed.plot(title='Kalman Filter vs Moving Average', figsize=(14,6), lw=1, rot=0)
ax.set_xlabel('')
ax.set_ylabel('S&P 500')
plt.tight_layout()
sns.despine();

Wavelets

wavelet = pywt.Wavelet('db6')
phi, psi, x = wavelet.wavefun(level=5)
df = pd.DataFrame({'$\phi$': phi, '$\psi$': psi}, index=x)
df.plot(title='Daubechies', subplots=True, layout=(1, 2), figsize=(14, 4), lw=2, rot=0)
plt.tight_layout()
sns.despine();
plot_data = [('db', (4, 3)),
             ('sym', (4, 3)),
             ('coif', (3, 2))]


for family, (rows, cols) in plot_data:
    fig = plt.figure(figsize=(24, 12))
    fig.subplots_adjust(hspace=0.2, wspace=0.2, bottom=.02, left=.06,
                        right=.97, top=.94)
    colors = itertools.cycle('bgrcmyk')

    wnames = pywt.wavelist(family)
    i = iter(wnames)
    for col in range(cols):
        for row in range(rows):
            try:
                wavelet = pywt.Wavelet(next(i))
            except StopIteration:
                break
            phi, psi, x = wavelet.wavefun(level=5)

            color = next(colors)
            ax = fig.add_subplot(rows, 2 * cols, 1 + 2 * (col + row * cols))
            ax.set_title(wavelet.name + " phi")
            ax.plot(x, phi, color, lw=1)
            ax.set_xlim(min(x), max(x))

            ax = fig.add_subplot(rows, 2*cols, 1 + 2*(col + row*cols) + 1)
            ax.set_title(wavelet.name + " psi")
            ax.plot(x, psi, color, lw=1)
            ax.set_xlim(min(x), max(x))
    sns.despine()

for family, (rows, cols) in [('bior', (4, 3)), ('rbio', (4, 3))]:
    fig = plt.figure(figsize=(24, 12))
    fig.subplots_adjust(hspace=0.5, wspace=0.2, bottom=.02, left=.06,
                        right=.97, top=.94)

    colors = itertools.cycle('bgrcmyk')
    wnames = pywt.wavelist(family)
    i = iter(wnames)
    for col in range(cols):
        for row in range(rows):
            try:
                wavelet = pywt.Wavelet(next(i))
            except StopIteration:
                break
            phi, psi, phi_r, psi_r, x = wavelet.wavefun(level=5)
            row *= 2

            color = next(colors)
            ax = fig.add_subplot(2*rows, 2*cols, 1 + 2*(col + row*cols))
            ax.set_title(wavelet.name + " phi")
            ax.plot(x, phi, color, lw=1)
            ax.set_xlim(min(x), max(x))

            ax = fig.add_subplot(2*rows, 2*cols, 2*(1 + col + row*cols))
            ax.set_title(wavelet.name + " psi")
            ax.plot(x, psi, color, lw=1)
            ax.set_xlim(min(x), max(x))

            row += 1
            ax = fig.add_subplot(2*rows, 2*cols, 1 + 2*(col + row*cols))
            ax.set_title(wavelet.name + " phi_r")
            ax.plot(x, phi_r, color, lw=1)
            ax.set_xlim(min(x), max(x))

            ax = fig.add_subplot(2*rows, 2*cols, 1 + 2*(col + row*cols) + 1)
            ax.set_title(wavelet.name + " psi_r")
            ax.plot(x, psi_r, color, lw=1)
            ax.set_xlim(min(x), max(x))
    sns.despine()

plt.show()

Available Wavelet Families

pywt.families(short=False)

Smoothing the S&P 500

signal = (pd.read_hdf(DATA_STORE, 'sp500/stooq')
          .loc['2008': '2009']
          .close.pct_change()
          .dropna())

fig, axes = plt.subplots(ncols=2, figsize=(14, 5))

wavelet = "db6"
for i, scale in enumerate([.1, .5]):
    
    coefficients = pywt.wavedec(signal, wavelet, mode='per')
    coefficients[1:] = [pywt.threshold(i, value=scale*signal.max(), mode='soft') for i in coefficients[1:]]
    reconstructed_signal = pywt.waverec(coefficients, wavelet, mode='per')
    signal.plot(color="b", alpha=0.5, label='original signal', lw=2, 
                 title=f'Threshold Scale: {scale:.1f}', ax=axes[i])
    pd.Series(reconstructed_signal, index=signal.index).plot(c='k', label='DWT smoothing}', linewidth=1, ax=axes[i])
    axes[i].legend()
fig.tight_layout()
sns.despine();
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Longbo-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值