原题链接
思路:根据点的位置,计算出每个点相应的的权值,权值越小,顺序越靠前。
1.首先,以2 *2的基础区块为例。不妨设基础区块中(0,0),(0,1),(1,0),(1,1)四个格点的权值分别为0,3,1,2。这样权值小的格点就在权值大的格点之前。
2.以4 *4为例,它由四个区块构成,而非格点。但这些区块之间同样具备同样的顺序关系,也可以通过权值提现。把权值看作一个四进制数,每一位表示该点在某一层上的顺序关系。
3.当i>=2时,所有的区块由基础区块组成。显然,朝向(c型开口朝上,右,下,左分别对应0,1,2,3)会改变基础区块四个位置上的权值,但当基础区块朝向相同时,可知它的四个点的顺序关系也是相同的。故我们在推求i,j位置上的权值时,要记录当前区块的朝向,并以此推算出下以层区块的朝向。再借由当前朝向,正确的更新权值。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,m;
const int MAXN=1e6+10;
ll poww[35];
struct node {
int x,y;
long long v;
bool operator <(node k){
return v<k.v;
}
}nodes[MAXN];
int dv[4][2][2]={//dv[k][i][j]:朝向为k时,在i,j位置上的点的次序
{0,3,1,2},
{2,3,1,0},
{2,1,3,0},
{0,1,3,2}
};
int dd[4][2][2]={//dd[k][i][j]:朝向为k时,在i,j位置上的点的朝向的变化,1顺时针转动,3逆时针转动,0不动。
{3,1,0,0},
{0,3,0,1},
{0,0,1,3},
{1,0,3,0}
};
//这两个矩阵是解这道题的关键,建议在草稿纸上手动推导一下。
long long cal(int x,int y){
ll v=0,tmp=0;int d=0;
for(int i=m;i>=1;i--){
v=v<<2;
v+=dv[d][x>poww[i-1]][y>poww[i-1]];//以边长一半为界,将当前分成4个区块
d=(d+dd[d][x>poww[i-1]][y>poww[i-1]])%4;
if(x>poww[i-1])x-=poww[i-1];
if(y>poww[i-1])y-=poww[i-1];
}
return v;
}
int main()
{
poww[0]=1;for(int i=1;i<=30;i++) poww[i]=poww[i-1]*2;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d %d",&nodes[i].x,&nodes[i].y);
nodes[i].v=cal(nodes[i].x,nodes[i].y);
}
sort(nodes+1,nodes+n+1);
for(int i=1;i<=n;i++){
printf("%d %d\n",nodes[i].x,nodes[i].y);
}
return 0;
}