import numpy as np
import math
"""正向传播"""
n = 3 # n 输入层 神经元个数
m = 13 # m 隐藏层 神经元
win = np.ones((n, 1)) # 输入层 权重
# w12 = np.mat(np.random.randint(1, 1, size=(m, n))) # 创建随机 矩阵 m行 n 列
# w23 = np.mat(np.random.randint(1, 1, size=(m, n))) #
w12 = np.ones((m, n)) # 创建随机 矩阵 m行 n 列
w23 = np.ones((m, n)) #
out = np.ones((n, 1)) # 输出层 权重
print(w12)
x = np.ones((n, 1)) # 输入层
th1 = np.zeros((n, 1))
th2 = np.zeros((m, 1))
th3 = np.zeros((n, 1))
# 第一层
xin = x # 输入层 (n, 1)
# 0. 输入层 给予 激励函数
y0 = np.ones((n, 1))
y0 = 1.0 / (1 + pow(math.e, -xin-th1)) # 激励函数 (n,1)
# 1.经过 系数矩阵 和 偏正矩阵 计算后 得
xhid = np.dot(w12, xin) # 隐藏层(m, n)* (n, 1) =(m, 1)
# 2. 将 隐藏层 给予激励函数
y1 = np.ones((m, 1))
y1 = 1.0 / (1 + pow(math.e, -xhid-th2)) # 激励函数
"""
此时隐藏层 为 y1 (m行1列的 列向量)
"""
# 3.经过 系数矩阵 和 偏正矩阵 计算后 得
xout = np.dot(w23.T, y1) - th3 # 输出层 (n, m) * (m, 1)= (n,1) - (n,1)
# 4. 将 输出层 给予激励函数
y2 = np.ones((n, 1))
y2 = 1.0 / (1 + pow(math.e, -xout-th3)) # 激励函数
print(y2) # (n,1)
"""正向传播 结束 """
正向传播算法
最新推荐文章于 2024-07-12 00:46:55 发布