R2-IBEA:基于R2指标的多目标优化进化算法
参考文献
《R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective Optimization》
要点
本文所提出的算法消除了选择中的支配排序,并使用R2指标进行基于指标的选择。R2指标具有量化解或解集的良好性的理想属性。称为R2-IBEA,旨在通过纠正R2指标的固有偏差,获得一套不同的帕累托近似解。R2指标更偏向帕累托前沿的中心,而不是边缘。
一、介绍
本文的贡献如下:
(1)基于超体积的权重向量生成。R2指标通常需要一组均匀分布在目标空间的权重向量。设计了R2-IBEA中的向量生成方法,来产生权重向量,使得它们在目标空间中均匀分散并最大化它们的超体积。它不依赖于目标空间的维数。
(2)二元R2指标。R2-IBEA利用了一个二元R2指标来确定给定的两个个体之间的上下级关系(或R2关系)。
(3)自适应参考点调整。R2指标通常需要固定的参考点。R2-IBEA根据当前世代个体在目标空间中的范围动态调整参考点的位置。这种自适应方法旨在纠正R2指标中固有的勘探偏差,帮助R2-IBEA获得一组多样化且均匀分布的个体。R2指标更偏向帕累托前沿的中心,而不是边缘。
二、R2指标的背景
R2指标最初是用来评估两组个体的相对质量的。假设标准加权切比雪夫函数有一个特定的参考点z*,该指标可用于评估单个集合(A)相对于z*的质量: