R2-IBEA:基于R2指标的多目标优化进化算法

R2-IBEA是一种基于R2指标的进化算法,用于多目标优化问题,它避免了传统的支配排序,采用R2指标进行选择。算法包括基于超体积的权重向量生成、二元R2指标和自适应参考点调整。权重向量均匀分布,增加算法的探索能力;二元R2指标用于确定个体间的优劣;动态参考点调整有助于获取多样化的帕累托近似解,尤其是对于帕累托前沿的中心和边缘部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R2-IBEA:基于R2指标的多目标优化进化算法

参考文献
《R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective Optimization》

要点

本文所提出的算法消除了选择中的支配排序,并使用R2指标进行基于指标的选择。R2指标具有量化解或解集的良好性的理想属性。称为R2-IBEA,旨在通过纠正R2指标的固有偏差,获得一套不同的帕累托近似解。R2指标更偏向帕累托前沿的中心,而不是边缘。

一、介绍

本文的贡献如下:

(1)基于超体积的权重向量生成。R2指标通常需要一组均匀分布在目标空间的权重向量。设计了R2-IBEA中的向量生成方法,来产生权重向量,使得它们在目标空间中均匀分散并最大化它们的超体积。它不依赖于目标空间的维数。

(2)二元R2指标。R2-IBEA利用了一个二元R2指标来确定给定的两个个体之间的上下级关系(或R2关系)。

(3)自适应参考点调整。R2指标通常需要固定的参考点。R2-IBEA根据当前世代个体在目标空间中的范围动态调整参考点的位置。这种自适应方法旨在纠正R2指标中固有的勘探偏差,帮助R2-IBEA获得一组多样化且均匀分布的个体。R2指标更偏向帕累托前沿的中心,而不是边缘。

二、R2指标的背景

R2指标最初是用来评估两组个体的相对质量的。假设标准加权切比雪夫函数有一个特定的参考点z*,该指标可用于评估单个集合(A)相对于z*的质量:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值