实时多导联卷积神经网络在心肌梗死检测中的应用
Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection
原文:https://ieeexplore.ieee.org/document/8103330
摘要:提出了一种基于心电图的多导联CNN心肌梗死检测算法。
1.多导联心电图进行心拍分割;
2.模糊信息粒化(FIG)进行预处理;
3.将信号送入ML-CNN分类;
ML-CNN是新模型(sub two-dimensional (2-D) convolutional layers 和 lead asymmetric pooling (LAP) layers ?)
不同的导联代表同一心脏的不同角度。
lead asymmetric pooling (LAP) layers:可以捕捉不同导联的多尺度特征,利用每个导联的个体特征。
sub two-dimensional (2-D) convolutional layer :可以利用所有导联的整体特性。它使用不同导联之间共享的一维卷积核来生成局部最优特征。
以上这些策略使ML-CNN适用于多导联心电图处理。
算法评估:
数据集->PTB诊断数据库中的实际ECG数据集;
精度指标->灵敏度为95.40%,特异性为97.37%,准确率为96.00%;
速度指标->平均每个心跳的处理时间:MATLAB为17.10毫秒;ARM Cortex-A9平台上为26.75毫秒;
该方法在移动医疗应用中具有良好的潜力。
原理部分介绍:
1.心拍分割方法:
1)对时间序列求一阶差分
2)求对差分值进行平方后求导联间均值(作用:放大变化剧烈的QRS部分)
绿框内是源信号,红框内是经过上述1)、2)处理得到的信号。
3)求局部极大值
4)自适应阈值筛选(去掉因噪声引起的局部极大值)
最终得到的结果如下图所示:
2.模糊信息粒化进行预处理:
信息粒化这一概念最早是由Lotfi A. Zadeh(L.A. Zadeh)教授提出的.信息粒化就是将一个整体分解为一个个的部分进行研究,每个部分为一个信息粒. Zadeh教授指出:信息粒就是一些元素的集合,这些元素由于难以区别、或相似、或接近或某种功能而结合在一起.
https://blog.csdn.net/FrankieHello/article/details/104505837
(FIG的原理,我也没看懂)
3.sub two-dimensional (2-D) convolutional layers:
为什么:作者认为在多导联ECG中,只有导联内部的局部变化对MI诊断有意义,因为只有导联内信号振幅是连续的,导联间信号振幅是不连续的。因此,多导联心电图的导联内局部变化整体决定检测结果。
怎么办:在多个导联间共享一维卷积核,这个一维卷积核只用于提取有意义的导联内变化。另一个好处是,更少的参数量,意味着过拟合的风险会降低。
(个人感觉,sub 2D卷积就是个通道数为1,高度为1,宽度为k(内核大小)的2D卷积,因为这样的卷积核可以实现同样的功能,而且代码上实现简单)
4.lead asymmetric pooling (LAP) layers:
对不同的通道加以不同的下采样系数,然后为了统一维度,再在两端补0。
结果:
基本参数:
实验基于一个ML-CNN,它有2个sub 2D卷积层、2个LAP池化层和2个MLP层。2个sub 2D卷积层,内核大小设置为31和5,内核数量设置为6和12。2个LAP池化层中的基本池系数均设置为3。因此,MLP的输入和输出元素的数量分别为576和2,而MLP中没有设置隐藏层。
结论:
该研究提出了一种基于多导联心电图的心肌梗死检测新算法。与传统的由特征提取和分类组成的机器学习框架不同,ML-CNN能够同时自动学习特征和分类样本。由于sub 2D卷积和LAP策略,ML-CNN比传统的二维CNN更适合于多导联心电图分析。结果表明,该方法检测心肌梗死的灵敏度为95.40%,特异性为97.37%,准确率为96.00%,与具有复杂手工设计特征的方法相当。该算法在PC和ARM嵌入式平台上的运行时间都很短,这表明它可以应用于实时系统。ARM上的实现表明了在可穿戴或便携式设备等移动系统中应用的可能性。
虽然提出的方法有许多优点,但仍有进一步改进的余地。该算法包含大量参数;因此,需要调整以获得更好的结果。对于实际应用,一个完整的硬件框架,包括前端采集电路、嵌入式平台和用户界面,是必不可少的。未来,将基于该算法建立一个轻量级的可穿戴或便携式系统。
参考文献
W. Liu et al., “Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 5, pp. 1434–1444, Sep. 2018, doi: 10.1109/JBHI.2017.2771768.