Windows下 OpenCV 的下载安装教程(详细)

本文详细介绍在Windows环境下安装OpenCV的步骤,包括从不同渠道下载、系统环境变量配置、VS中部署OpenCV,以及测试代码示例,帮助读者顺利进行计算机视觉项目开发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows下 OpenCV 的下载安装教程(详细)

OpenCV简介

OpenCV(Open Source Computer Vision Library)是一个跨平台的计算机视觉库,可以在windows、Linux、Android和Mac OS等操作平台上运行,不但可以运行C和C++,同时提供了Python、Ruby、MATLAB等语言的接口,主要用来实现物体识别、图像分割、人脸识别、动作识别等图像处理和计算机视觉方面的通用算法。OpenCV的下载安装并不难,但是需要耐心。
通过自己亲身实践,总结了以下OpenCV的下载安装部署的详细教程。

OpenCV的下载

OpenCV的下载并不只是局限于从官网下载,一般来说,如果没有翻墙软件的话,下载OpenCV安装包是特别特别慢的,同时还有以下几种办法:

  1. OpenCv官网下载,找到自己要下载的对应版本,然后找到自己对应的操作系统点击即可下载,如下图所示(以最新版本的OpenCV和Windows系统为例):
    在这里插入图片描述
    在这里插入图片描述
    这样就可以自动下载了。
  2. 可以参考链接OpenCV 下载驿站(百度云盘下载),直接找到自己需要的版本,链接跳到百度网盘界面,直接下载即可。
  3. 直接通过镜像网站来进行下载自己所需要的版本。

OpenCV的安装过程

  1. 下载好的OpenCV安装包如下所示:在这里插入图片描述
    直接双击上图所示的.exe文件即可安装:
    在这里插入图片描述
    可以选择所要安装的路径,然后点击上图所示的按钮进行安装即可(其实就是一个解压的过程,但是要记住自己的安装路径):
    在这里插入图片描述

  2. 接着进行系统环境变量的配置:右键“此电脑“——> 点击”属性“——> 点击”高级系统设置“——> 点击”环境变量“,就会看到如下图所示的界面:
    在这里插入图片描述
    接着点击"Path"、编辑:
    在这里插入图片描述
    系统变量也是同样的设置方法, 找到自己刚刚安装的OpenCV路径下的include文件夹,即:
    找到你解压好的OpenCV文件夹,依次选择build—>x64—>vc15—>bin,也就是下图所示:
    在这里插入图片描述
    环境变量添加以后如图所示:
    在这里插入图片描述
    环境变量添加完成以后,最好重启以下,重启以后环境变量的更改才会生效。

  3. 系统变量配置完成以后,就需要在VS当中部署OpenCV了,前提是VS已经安装好了,如果没有的话,就直接从VS下载链接进行下载安装。

  4. 首先 打开Visual Studio,新建一个项目:
    在这里插入图片描述

  5. 接着添加包含目录:
     依次选择项目—>属性—>VC++目录—>包含目录—>编辑
     在这里插入图片描述
      找到包含目录,点击右边的小三角,再点击编辑就可以进行添加了,添加的是include文件夹以及所属的文件,一共有三个路径:
      C:\Program Files\opencv\opencv\build\include
      C:\Program Files\opencv\opencv\build\include\opencv
      C:\Program Files\opencv\opencv\build\include\opencv2
    在这里插入图片描述

  6. 添加库目录:
    依次选择项目—>属性—>VC++目录—>库目录—>编辑
    将自己build文件夹下的最末的lib文件添加到库目录下:
    在这里插入图片描述

  7. 添加附加依赖项
      依次选择项目—>属性—>链接器—>输入—>附加依赖项—>编辑——>添加你的库文件名
      在这里插入图片描述
    库文件名一般都在build文件夹下的x64下的对应文件夹下的lib文件夹下:
    在这里插入图片描述
     有两个文件opencv_world320ib和opencv_world320b
     如果自己分不清是什么配置的,最好将两个文件名都添加进去。最后点击应用或者是确定即可。
     如果想要测试自己的配置是否成功,之u姐复制粘贴以下代码到刚新建好的项目当中,进行运行,如果未报错,就可以进行进一步的学习了:

//读取图片并显示
#include "stdio.h"
#include<iostream> 
#include <opencv2/core/core.hpp> 
#include <opencv2/highgui/highgui.hpp> 
using namespace cv;
int main()
{
    Mat img = imread("E:\\1.bmp");
     namedWindow("测试opencv");
     imshow("测试opencv", img);
    cvWaitKey(6000);
}

如果进行测试以后,会输出相应的图片:
在这里插入图片描述
在配置环境时一定要仔细仔细再仔细,千万不能着急,否则就会出现大量的错误,但是如果配置不成功也不要着急,搜索错误代码就会得到相应的解决办法(本人就是这么解决的)
大家有什么问题可以留言,定会回复。

### 安装最新版CUDA 对于希望安装最新版CUDA的用户,建议按照官方指南操作以确保最佳兼容性和稳定性。在开始之前,确认计算机当前支持的CUDA版本非常重要。这可以通过命令提示符中的`nvidia-smi`命令来完成,在返回的信息中表格右上角会显示所使用的显卡可以适配的最高CUDA版本[^2]。 #### 下载CUDA Toolkit 访问[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads),选择适合的操作系统、架构和其他必要参数后点击下载按钮获取最新的CUDA工具包。注意,有时为了获得更好的稳定性,可以选择稍微低于最大支持版本的一个版本进行安装[^1]。 #### 卸载旧版本CUDA(如果有) 如果已经安装了较早版本的CUDA,则应先卸载这些旧版本。具体方法取决于操作系统;对于Linux系统来说,通常涉及移除现有软件包以及清理残留文件等步骤。务必仔细阅读相关文档以防止误删重要组件。 #### 配置环境变量 成功安装新版本之后,还需要适当调整系统的PATH和LD_LIBRARY_PATH等环境变量设置,使得编译器及其他应用程序能够找到新的库位置。此过程同样依赖于具体的平台差异而有所不同[^3]。 #### 测试安装是否成功 最后一步是对刚刚完成的新安装执行简单的验证程序,比如运行一些示例代码或者尝试构建项目来看看是否存在任何链接错误等问题。NVIDIA提供了多种方式来进行这项工作,包括但不限于使用nvcc编译器自带的例子。 ```bash # 编译并运行一个简单的CUDA C++例子 $ nvcc -o vectorAddition vectorAddition.cu $ ./vectorAddition ``` #### cuDNN 的安装 由于cuDNN是深度学习框架的重要组成部分之一,因此也需要特别关注其正确安装。首先需注册成为开发者成员才能从NVIDIA网站合法获取所需资源。接着依据个人需求挑选对应CUDA版本号的cuDNN压缩包,并依照说明将其放置到相应目录下。 ```bash tar -xvzf cudnn-<version>-linux-x64-v<revision>.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ```
评论 112
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值