BZOJ 2818: Gcd(欧拉函数的应用)

题目来源:https://www.lydsy.com/JudgeOnline/problem.php?id=2818

2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 9819  Solved: 4363
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

 

Input

一个整数N

Output

如题

Sample Input

4
 

Sample Output

4

HINT

 

hint

对于样例(2,2),(2,4),(3,3),(4,2)

 

1<=N<=10^7
 

 

Source

湖北省队互测

题解来自http://hzwer.com/3466.html

我认为的做法就是

第一步:令s=GCD(x,y)由于gcd的某些性质可令a,b使得 s*a=x,s*b=y 

第二步:得到的a,b还有后面两个性质   gcd(a,b)=1,a<=b

第三步:由于s必须为素数,我们枚举素数s,求 gcd(a,b)=1合法的对数。这里还需要枚举y

枚举y和s。。b=y/s,b代入欧拉函数。

第四步:通过简单分析可知:若s=2,n=10;则枚举y的取值有2,4,6,8,10;对应的b为1,2,3,4,5;对b求欧拉函数再求和即是答案。于是这里处理y的前缀和,降低时间复杂度

为何要前缀和?

枚举s=2.枚举y=2,ans+=Euler[y/s=1]

        s=2,枚举y=4, ans+=Euler[2]

枚举s=3    枚举y=3   ans+=Euler[1]

        s=3   枚举y=6   ans==Euler[2]

我们可以发现y那里一直在重复操作某个前缀和。

所以需要对y处理前缀和。每次枚举s,加上的前缀和就是ans+=sum[n/s];

法一:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<sstream>
using namespace std;
typedef long long ll;
const int N=1e7+5;
bool p[N];
int prime[1000005];
int visit[N];
int phi[N];
int tot;
void euler(int n)
{
	memset(visit,0,sizeof(visit));
	phi[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(!visit[i])//?i???? 
		{
			prime[tot++]=i;
			phi[i]=i-1;
		}
		for(int j=0;j<tot;j++)
		{
			int mid=i*prime[j];
			if(mid>n)break;
			visit[mid]=1;
			if(i%prime[j]==0)
			{
				phi[mid]=phi[i]*prime[j];//??3     
                break;//这句话可加可不加?
			}
			else
			{
				phi[mid]=phi[i]*phi[prime[j]];//??2 
			}
		}
	}
}
ll sum[N];
int main()
{
	
	ll n;
	scanf("%lld",&n);
	euler(n);
	for(int i=1;i<=n;i++) 
	sum[i]=sum[i-1]+phi[i];
	ll ans=0;
	for(int i=0;i<tot;i++) 
		ans+=sum[n/prime[i]]*2-1;
	printf("%lld\n",ans);
	return 0;
}

法二:莫比乌斯反演

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
const int N=1e7+10;
const int maxn=1e7+5;
int isPrime[N];
int miu[N];
int prime[N];
int num_prime;
void getmiu(){
    memset(isPrime,0,sizeof(isPrime));
    miu[1]=1;
    for(ll i=2;i<=maxn;i++){
        if(isPrime[i]==0) prime[num_prime++]=i,miu[i]=-1;
        for(ll j=0;j<num_prime;j++){
            if(i*prime[j]>maxn) break;
            isPrime[i*prime[j]]=1;
            if(i%prime[j]==0){
                miu[i*prime[j]]=0;
                break;
            }else miu[i*prime[j]]=-1*miu[i];
        }
    }
}
 
int main()
{
    getmiu();
    ll n;
    cin>>n;
    ll ans=0;
    for(int i=0;i<num_prime;++i){
    	for(int j=prime[i];j<=n;j+=prime[i]){
    		ans+=miu[j/prime[i]]*(n/j)*(n/j);
		}
	}
	printf("%lld\n",ans);
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ccsu_deer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值