欧拉函数初步

本文详细介绍了欧拉函数的概念,包括其定义、性质如欧拉函数的乘积性、与质数的关系,以及如何通过埃氏筛和线性筛求解欧拉函数。重点讨论了性质4至性质9,并给出了几个实例和求解方法,涵盖了自动推理、编程技巧和数据结构的应用。
摘要由CSDN通过智能技术生成

概念

若 a , b ∈ Z , gcd ⁡ ( a , b ) = 1 , 则 称 a 与 b 互 质 对 于 n ∈ Z , 将 区 间 [ 1 , n ] 中 与 n 互 质 的 个 数 称 为 欧 拉 函 数 , 记 作 φ ( n ) 若a,b\in\Z,\gcd(a,b)=1,则称a与b\color{Blue}互质\\\color{black}对于n\in\Z,将区间[1,n]中与n互质的个数称为\color{Blue}{欧拉函数},记作\varphi(n) a,bZ,gcd(a,b)=1,abnZ,[1,n]n,φ(n)


欧拉函数

考 虑 n = p 1 c 1 ⋅ p 2 c 2 ⋅ p 3 c 3 ⋯ p m c m , 则 有 φ ( n ) = n ⋅ ∏ i = 1 m ( 1 − 1 p i ) \boxed{考虑n=p_1^{c_1}\cdot p_2^{c_2}\cdot p_3^{c_3}\cdots p_m^{c_m},则有\color{Red}\varphi(n)=n\cdot\prod\limits_{i=1}^{m}(1-\dfrac{1}{p_i})} n=p1c1p2c2p3c3pmcm,φ(n)=ni=1m(1pi1)
证明:
若一个数质因数与n的质因数都不相同,则这个数和n互质,因此我们只需要考虑不是n的质因数的质数可以构成多少 [ 1 , n ] [1,n] [1,n]内的正整数即可。
∵ 对 于 n 的 质 因 数 p i , 都 在 [ 1 , n ] 内 有 n ⋅ 1 p i 个 数 与 n 有 共 同 的 质 因 数 p i ∴ 对 于 质 因 数 p i , 都 在 [ 1 , n ] 内 有 n ⋅ ( 1 − 1 p i ) 个 数 不 是 质 因 数 p i 的 倍 数 ∴ 不 是 n 任 何 一 个 质 因 数 倍 数 的 数 在 [ 1 , n ] 内 有 n ⋅ ∏ i = 1 m ( 1 − 1 p i ) 个 ∴ φ ( n ) = n ⋅ ∏ i = 1 m ( 1 − 1 p i ) \because 对于n的质因数p_i,都在[1,n]内有n\cdot \dfrac{1}{p_i}个数与n有共同的质因数p_i\\\therefore 对于质因数p_i,都在[1,n]内有n\cdot (1-\dfrac{1}{p_i})个数不是质因数p_i的倍数\\\therefore 不是n任何一个质因数倍数的数在[1,n]内有n\cdot\prod\limits_{i=1}^{m}(1-\dfrac{1}{p_i})个\\\therefore \varphi(n)=n\cdot\prod\limits_{i=1}^{m}(1-\dfrac{1}{p_i}) npi,[1,n]npi1npipi,[1,n]n(1pi1)pin[1,n]ni=1m(1pi1)φ(n)=ni=1m(1pi1)

#include<bits/stdc++.h>
using namespace std;
int n;
double ans=0;
int main()
{
	cin>>n;
	ans=n;
	for(int i=2;i*i<=n;i++)
	{
		if(n%i==0)
		{
			ans=ans*(i-1)*1.0/(i*1.0);
			while(n%i==0) n/=i;
		}
	}
	if(n>1)
	{
		ans=ans*(n-1)*1.0/(n*1.0);
	}
	cout<<ans;
	return 0;
}
  • 下文中的所有 p i p_i pi 都表示质因数, p p p表示质数

简单性质

性 质 1 φ ( 1 ) = 1 性质 \mathbf{1}\quad\boxed{\varphi(1)=1} 1φ(1)=1

性 质 2 ∀ p 为 质 数 , φ ( p ) = p − 1 性质 \mathbf{2} \quad\boxed{\forall p为质数,\varphi(p)=p-1} 2pφ(p)=p1

性 质 3 ∀ p 为 质 数 , n = p k , φ ( n ) = p k − p k − 1 = p k − 1 ( p − 1 ) 性质 \mathbf{3} \quad\boxed{\color{Red}\forall p为质数,n=p^k,\varphi(n)=p^k-p^{k-1}=p^{k-1}(p-1)} 3p,n=pk,φ(n)=pkpk1=pk1(p1)
证明:
∵ n = p k , p 为 质 数 ∴ n 的 质 因 数 只 有 p ∴ 若 gcd ⁡ ( a , n ) ≠ 1 ⇔ ∀ s ∈ Z , s ⋅ p ≤ p k , a = s p ∴ s ≤ p k − 1 ∴ 有 p k − 1 个 a 不 与 n 互 质 ∴ , φ ( n ) = p k − p k − 1 = p k − 1 ( p − 1 ) \because n=p^k,p为质数\\\therefore n的质因数只有p\\\therefore 若\gcd(a,n)\ne1\Leftrightarrow \forall s\in\Z,s\cdot p\leq p^k,a=sp\\\therefore s\leq p^{k-1}\\\therefore 有p^{k-1}个 a不与n互质\\\therefore ,\varphi(n)=p^k-p^{k-1}=p^{k-1}(p-1) n=pk,pnpgcd(a,n)=1sZ,sppk,a=spspk1pk1an,φ(n)=pkpk1=pk1(p1)

性 质 4 若 gcd ⁡ ( n , m ) = 1 , φ ( n ⋅ m ) = φ ( n ) ⋅ φ ( m ) , 即 欧 拉 函 数 为 积 性 函 数 性质 \mathbf{4} \quad\boxed{\color{Red}若\gcd(n,m)=1,\varphi(n\cdot m)=\varphi(n)\cdot \varphi(m),即欧拉函数为积性函数} 4gcd(n,m)=1φ(nm)=φ(n)φ(m)
证明:
∵ gcd ⁡ ( n , m ) = 1 , 所 以 n 与 m 的 质 因 数 集 合 无 交 集 ∴ 可 将 n 的 质 因 数 集 合 表 示 为 P = { p i ∣   1 ≤ i ≤ α } , m 的 质 因 数 集 合 表 示 为 Q = { p i ∣   α + 1 ≤ i ≤ β } ∴ n m 的 质 因 数 集 合 可 以 表 示 为 P ∪ Q , 即 { p i ∣   1 ≤ i ≤ β } ∴ φ ( n ) ⋅ φ ( m ) = n ⋅ m ⋅ ∏ i = 1 α ( 1 − 1 p i ) ⋅ ∏ i = α + 1 β ( 1 − 1 p i )    = n m ⋅ ∏ i = 1 β ( 1 − 1 p i )    = φ ( n m ) \because \gcd(n,m)=1,所以n与m的质因数集合无交集\\\therefore 可将n的质因数集合表示为P=\{p_i\mid \, 1\leq i\leq \alpha\},m的质因数集合表示为Q=\{p_i\mid \, \alpha+1\leq i\leq \beta\}\\\therefore nm的质因数集合可以表示为P\cup Q ,即\{p_i\mid \, 1\leq i\leq \beta \}\\\therefore \varphi(n)\cdot \varphi(m)=n\cdot m\cdot \prod\limits_{i=1}^{\alpha}(1-\dfrac{1}{p_i})\cdot \prod\limits_{i=\alpha+1}^{\beta}(1-\dfrac{1}{p_i})\\\qquad \qquad \qquad \, \, =nm\cdot\prod\limits_{i=1}^{\beta}(1-\dfrac{1}{p_i})\\\qquad \qquad \qquad \, \, =\varphi(nm) gcd(n,m)=1,nmnP={pi1iα},mQ={piα+1iβ}nmPQ,{pi1iβ}φ(n)φ(m)=nmi=1α(1pi1)i=α+1β(1pi1)=nmi=1β(1pi1)=φ(nm)

性 质 5 对 于 质 数 p , 若 p ∣ n , 则 φ ( n ⋅ p ) = φ ( n ) ⋅ p , 否 则 φ ( n ⋅ p ) = φ ( n ) ⋅ φ ( p ) 性质 \mathbf{5} \quad\boxed{\color{Red}对于质数p,若p\mid n,则\varphi(n\cdot p)=\varphi(n)\cdot p,否则\varphi(n\cdot p)=\varphi(n)\cdot \varphi(p)} 5p,pnφ(np)=φ(n)pφ(np)=φ(n)φ(p)
证明:
考 虑 p ∣ φ ( n ) ∴ ∃ s , k ∈ Z , n = p k ⋅ s ∴ gcd ⁡ ( n p k , p k ⋅ p ) = 1 ∵ 欧 拉 函 数 是 积 性 函 数 ∴ φ ( n ⋅ p ) = φ ( n p k ) ⋅ φ ( p k + 1 ) = n p k ⋅ ∏ i = 1 m ( 1 − 1 p i ) ( 1 − 1 p ) ⋅ p k ( p − 1 ) = n ⋅ 1 p k ⋅ p k ⋅ ∏ i = 1 m ( 1 − 1 p i ) ⋅ p p − 1 ⋅ ( p − 1 ) = n ⋅ ∏ i = 1 m ( 1 − 1 p i ) ⋅ p = φ ( n ) ⋅ p 考 虑 p ∤ n ∵ p ∤ n , p 为 质 数 ∴ gcd ⁡ ( p , n ) = 1 ∴ φ ( n ⋅ p ) = φ ( n ) ⋅ φ ( p ) 考虑p\mid\varphi(n)\\\therefore \exist s,k\in\Z,n=p^k\cdot s\\\therefore \gcd(\dfrac{n}{p^k},p^k\cdot p)=1\\\because 欧拉函数是积性函数\\\therefore \varphi(n\cdot p)=\varphi(\dfrac{n}{p^k})\cdot\varphi(p^{k+1})\\\quad =\dfrac{n}{p^k}\cdot\dfrac{\prod\limits_{i=1}^{m}(1-\dfrac{1}{p_i})}{(1-\dfrac{1}{p})}\cdot p^k(p-1)\\\quad =n\cdot \dfrac{1}{p^k}\cdot p^k\cdot \prod\limits_{i=1}^{m}(1-\dfrac{1}{p_i})\cdot \dfrac{p}{p-1}\cdot (p-1)\\\quad =n\cdot \prod\limits_{i=1}^{m}(1-\dfrac{1}{p_i})\cdot p\\\quad =\varphi(n)\cdot p\\考虑p \nmid n\\\because p\nmid n,p为质数\\\therefore \gcd(p,n)=1\\\therefore \varphi(n\cdot p)=\varphi(n)\cdot \varphi(p) pφ(n)s,kZ,n=pksgcd(pkn,pkp)=1φ(np)=φ(pkn)φ(pk+1)=pkn(1p1)i=1m(1pi1)pk(p1)=npk1pki=1m(1pi1)p1p(p1)=ni=1m(1pi1)p=φ(n)ppnpn,pgcd(p,n)=1φ(np)=φ(n)φ(p)

性 质 6 ∀ n > 2 , 2 ∣ φ ( n ) 性质\mathbf{6}\quad\boxed{\color{Red}\forall n>2,2\mid\varphi(n)} 6n>2,2φ(n)
证明:
考 虑 g ∈ Z , g ∣ a , g ∣ b ∵ ∃ s , k ∈ Z a = s ⋅ g , b = k ⋅ g ∴ a − b = g ( s − k ) ∴ g ∣ ( a − b ) ∴ 所 以 ( a − b ) 的 因 数 集 与 a 与 b 的 公 因 数 集 完 全 相 同 ∴ 若 a > b , g c d ( a , b ) = g c d ( a , a − b ) = g c d ( b , a − b ) ∴ 当 gcd ⁡ ( n , m ) = 1 , 都 有 gcd ⁡ ( n , n − m ) = 1 ∴ 与 n 互 质 的 数 是 成 对 出 现 的 ∴ ∀ n > 2 , 2 ∣ φ ( n ) 对 于 n < 2 的 情 况 请 读 者 自 行 考 虑 验 证 考虑g\in \Z,g\mid a,g\mid b\\\because \exist s,k\in\Z a=s\cdot g,b=k\cdot g\\\therefore a-b=g(s-k)\\\therefore g\mid (a-b)\\\therefore 所以(a-b)的因数集与a与b的公因数集完全相同\\\therefore 若 a>b,gcd(a,b)=gcd(a,a-b)=gcd(b,a-b)\\\therefore 当\gcd(n,m)=1,都有\gcd(n,n-m)=1\\\therefore 与n互质的数是成对出现的\\\therefore \forall n>2,2\mid \varphi(n)\\对于n<2的情况请读者自行考虑验证 gZ,ga,gbs,kZa=sg,b=kgab=g(sk)g(ab)(ab)aba>bgcd(a,b)=gcd(a,ab)=gcd(b,ab)gcd(n,m)=1,gcd(n,nm)=1nn>22φ(n)n<2

性 质 7 ∀ n > 1 , [ 1 , n ] 中 与 n 互 质 的 数 和 为 n ⋅ φ ( n ) 2 性质\mathbf{7}\quad \boxed{\color{Red} \forall n>1,[1,n]中与n互质的数和为 n\cdot \dfrac{\varphi(n)}{2}} 7n>1[1,n]nn2φ(n)
证明:
∵ 引 用 性 质 6 证 明 中 的 结 论 , 若 m 与 n 互 质 , 必 有 n − m 也 与 n 互 质 ∴ m + ( n − m ) = n ∵ n 中 与 n 互 质 的 数 对 ( m , n − m ) 有 φ ( n ) ⋅ 1 2 对 ∴ [ 1 , n ] 中 与 n 互 质 的 数 的 和 为 : ( m + ( n − m ) ) ⋅ φ ( n ) 2 = n ⋅ φ ( n ) 2 \because 引用性质6证明中的结论,若m与n互质,必有n-m也与n互质\\\therefore m+(n-m)=n\\\because n中与n互质的数对(m,n-m)有\varphi(n)\cdot \dfrac{1}{2}对\\\therefore [1,n]中与 n互质的数的和为:\\\quad (m+(n-m))\cdot \dfrac{\varphi(n)}{2}\\\quad =n\cdot \dfrac{\varphi(n)}{2} 6mnnmnm+(nm)=nnn(m,nm)φ(n)21[1,n]n(m+(nm))2φ(n)=n2φ(n)

性 质 8 ∑ d ∣ n φ ( d ) = n 性质\mathbf{8}\quad\boxed{\color{Red} \sum_{d\mid n}\varphi(d)=n} 8dnφ(d)=n

证明:
考 虑 f ( n ) = ∑ d ∣ n φ ( n ) , 试 证 明 当 gcd ⁡ ( n , m ) = 1 时 , f ( n ⋅ m ) = f ( n ) ⋅ f ( m ) f ( n ) ⋅ f ( m ) = ∑ i ∣ n φ ( i ) ⋅ ∑ j ∣ m φ ( j )    = φ ( i 1 ) ⋅ φ ( j 1 ) + φ ( i 1 ) ⋅ φ ( j 2 ) + φ ( i 1 ) ⋅ φ ( j 3 ) ⋯ φ ( i 1 ) ⋅ φ ( j m ) + φ ( i 2 ) ⋅ φ ( j 1 ) + φ ( i 2 ) ⋅ φ ( j 2 ) ⋯ φ ( i n ) ⋅ φ ( j m )    = φ ( i 1 ⋅ j 1 ) + φ ( i 1 ⋅ j 2 ) ⋯ + φ ( i n ⋅ j m ) ∵ g c d ( n , m ) = 1 ∴ 可 以 得 到 , i 1 ⋅ i 2 ⋯ i n ⋅ j m 构 成 了 n ⋅ m 的 所 有 因 数 ∴ gcd ⁡ ( n , m ) = 1 , f ( n m ) = f ( n ) ⋅ f ( m )   ∵ p 为 质 数 , 有 f ( p k ) = φ ( 1 ) + φ ( p ) + φ ( p 2 ) ⋯ + φ ( p k ) = 1 + ( p − 1 ) + ( p 2 − p ) ⋯ + ( p k − p k − 1 ) = p k ∵ 任 意 整 数 n = p 1 c 1 ⋅ p 2 c 2 ⋯ p m c m ∴ ∀ n ∈ Z , f ( n ) = f ( p 1 c 1 ⋅ p 2 c 2 ⋯ p m c m ) = f ( p 1 c 1 ) ⋅ f ( p 2 c 2 ) ⋯ f ( p m c m ) = p 1 c 1 ⋅ p 2 c 2 ⋯ p m c m = n ∴ 结 论 成 立 考虑f(n)=\sum_{d\mid n}\varphi(n),试证明当\gcd(n,m)=1时,f(n\cdot m)=f(n)\cdot f(m)\\f(n)\cdot f(m)=\sum_{i\mid n}\varphi(i)\cdot \sum_{j\mid m}\varphi(j)\\\qquad\qquad\quad\,\, =\varphi(i_1)\cdot \varphi(j_1)+\varphi(i_1)\cdot \varphi(j_2)+\varphi(i_1)\cdot \varphi(j_3)\cdots \varphi(i_1)\cdot \varphi(j_m)+\varphi(i_2)\cdot \varphi(j_1)+\varphi(i_2)\cdot \varphi(j_2)\cdots \varphi(i_n)\cdot \varphi(j_m)\\\qquad\qquad\quad\,\,= \varphi(i_1\cdot j_1)+\varphi(i_1\cdot j_2)\cdots+\varphi(i_n\cdot j_m)\\\because gcd(n,m)=1\\\therefore 可以得到,i_1\cdot i_2\cdots i_n\cdot j_m构成了n\cdot m的所有因数\\\therefore \gcd(n,m)=1,f(nm)=f(n)\cdot f(m)\\\,\\\because p为质数,有f(p^k)=\varphi(1)+\varphi(p)+\varphi(p^2)\cdots +\varphi(p^k)=1+(p-1)+(p^2-p)\cdots+(p^k-p^{k-1})=p^k\\\because 任意整数n=p_1^{c_1}\cdot p_2^{c_2}\cdots p_m^{c_m}\\\therefore \forall n\in \Z,f(n)=f(p_1^{c_1}\cdot p_2^{c_2}\cdots p_m^{c_m})=f(p_1^{c_1})\cdot f(p_2^{c_2})\cdots f(p_m^{c_m})=p_1^{c_1}\cdot p_2^{c_2}\cdots p_m^{c_m}=n\\\therefore 结论成立 f(n)=dnφ(n),gcd(n,m)=1f(nm)=f(n)f(m)f(n)f(m)=inφ(i)jmφ(j)=φ(i1)φ(j1)+φ(i1)φ(j2)+φ(i1)φ(j3)φ(i1)φ(jm)+φ(i2)φ(j1)+φ(i2)φ(j2)φ(in)φ(jm)=φ(i1j1)+φ(i1j2)+φ(injm)gcd(n,m)=1i1i2injmnmgcd(n,m)=1f(nm)=f(n)f(m)pf(pk)=φ(1)+φ(p)+φ(p2)+φ(pk)=1+(p1)+(p2p)+(pkpk1)=pkn=p1c1p2c2pmcmnZ,f(n)=f(p1c1p2c2pmcm)=f(p1c1)f(p2c2)f(pmcm)=p1c1p2c2pmcm=n

性 质 9 若 gcd ⁡ ( m , a ) = 1 , a φ ( m ) ≡ 1 ( m o d m ) 性质\mathbf{9}\quad\boxed{\color{Red}若\gcd(m,a)=1,a^{\varphi(m)}\equiv1\pmod{m}} 9gcd(m,a)=1aφ(m)1(modm)

证明:
考 虑 一 个 模 m 的 互 质 剩 余 系 { x 1 , x 2 , x 3 ⋯ x φ ( m ) } , 其 中 x 小 于 m , 且 都 与 m 互 质 。 ∵ gcd ⁡ ( x k , m ) = 1 , gcd ⁡ ( a , m ) = 1 ∴ gcd ⁡ ( a ⋅ x k , m ) = 1 , 且 a x i 两 两 互 质 。   此 时 考 虑 证 明 a x i ≢ a x j ( m o d m ) / / 考虑一个模m的互质剩余系\{x_1,x_2,x_3\cdots x_{\varphi(m)}\},其中x小于m,且都与m互质。\\\because \gcd(x_k,m)=1,\gcd(a,m)=1\\\therefore \gcd(a\cdot x_k,m)=1,且ax_i两两互质。\\~\\此时考虑证明 ax_i\not\equiv ax_j\pmod m// m{x1,x2,x3xφ(m)}xmmgcd(xk,m)=1gcd(a,m)=1gcd(axk,m)=1axi axiaxj(modm)//
若 a x i ≡ a x j ( m o d m ) 则 有 m ∣ a ( x i − x j ) ∵ gcd ⁡ ( m , a ) = 1 ∴ m ∣ ( x i − x j ) ∴ x i ≡ x j ( m o d m ) 与 题 设 不 符 , 顾 原 命 题 a x i ≢ a x j ( m o d m ) / 成 立 若ax_i\equiv ax_j\pmod m\\ 则有 m\mid a(x_i-x_j)\\ \because \gcd(m,a)=1\\ \therefore m\mid (x_i-x_j)\\ \therefore x_i\equiv x_j \pmod m \\ 与题设不符,顾原命题ax_i\not\equiv ax_j\pmod m/成立 axiaxj(modm)ma(xixj)gcd(m,a)=1m(xixj)xixj(modm)axiaxj(modm)/
因此有 { a x 1 , a x 2 . a x 3 ⋯ a x m } \{ax_1,ax_2.ax_3\cdots ax_m\} {ax1,ax2.ax3axm}也是互质同余系,因此利用同模数同余式的合并性质,有
∏ i = 1 φ ( m ) a x i ≡ ∏ i = 1 φ ( m ) x i ( m o d m )   a φ ( m ) ∏ i = 1 φ ( m ) x i ≡ ∏ i = 1 φ ( m ) x i ( m o d m )   a φ ( m ) ≡ 1 ( m o d m ) \prod\limits_{i=1}^{\varphi(m)}ax_i\equiv\prod\limits_{i=1}^{\varphi(m)}x_i\pmod m\\ ~\\a^{\varphi(m)}\prod\limits_{i=1}^{\varphi(m)}x_i\equiv\prod\limits_{i=1}^{\varphi(m)}x_i\pmod m\\ ~\\a^{\varphi(m)}\equiv1\pmod m i=1φ(m)axii=1φ(m)xi(modm) aφ(m)i=1φ(m)xii=1φ(m)xi(modm) aφ(m)1(modm)

证毕


区间内的欧拉函数求值

由于欧拉函数可以从质因数得到,我们不难想到可以利用埃氏筛和线性筛两种方法求出 [ 1 , n ] [1,n] [1,n]内的欧拉函数值。

  • 埃氏筛
    在埃氏筛中,每一个数都会被它的质因数筛一遍,我们可以利用这点在埃氏筛中完成欧拉函数求值
    我们甚至可以直接用 φ \varphi φ 数组代替标记数组!
#include<bits/stdc++.h>
using namespace std;
int n;
double phi[1000010]={0};
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++) phi[i]=i;
	for(int i=2;i*i<=n;i++)
	{
		if(phi[i]!=i) continue;
		for(int j=2;j*i<=n;j++)
		  phi[j*i]=phi[j*i]*(i-1)*1.0/(i*1.0);
	}
	for(int i=1;i<=n;i++) 
	{
	  if(phi[i]==i&&i!=1) phi[i]--;   //别问我为什么要加这一行,问就是上面那些处理质数有bug……
	  cout<<phi[i]<<endl;
    }
	return 0;
}
  • 线性筛
    另外我们可以发现 性 质 5 \mathbf{性质5} 5 的结论仿佛就是为线性筛量身定制的,因此我们也可以通过线性筛使用线性复杂度来求出 [ 1 , n ] [1,n] [1,n] 中的欧拉函数。
#include<bits/stdc++.h>
using namespace std;
int n;
double phi[1000010]={0};
int prime[100010],tot=0;
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++) phi[i]=i;
	for(int i=2;i<=n;i++)
	{
		if(phi[i]==i)
		{
			prime[++tot]=i;
			phi[i]=i-1;
		}
		for(int j=1;j<=tot&&i*prime[j]<=n;j++)
		{
			if(i%prime[j]==0)
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			else
			{
				phi[i*prime[j]]=phi[i]*phi[prime[j]];
			}
		}
	}
	for(int i=1;i<=n;i++) cout<<phi[i]<<endl;
	return 0;
}

总结

留下几道例题:
https://www.luogu.com.cn/problem/P2158

https://www.luogu.com.cn/problem/P1447

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值