1数值稳定性





梯度爆炸是指在深度学习中,梯度值变得非常大,以至于在反向传播过程中,梯度逐渐增加并最终超出了计算机能够表示的范围。这会导致数值溢出,使得模型的参数更新变得不稳定,甚至无法收敛到一个合理的解。
梯度爆炸通常出现在深度神经网络中,尤其是在循环神经网络(RNN)等具有梯度传递的模型中。当网络的层数较多或者激活函数的选择不当时,梯度会在反向传播过程中呈指数级增长,导致梯度爆炸的问题。
梯度爆炸对模型的训练造成了严重影响,使得模型无法收敛或者收敛速度非常慢。为了解决梯度爆炸的问题,可以采取以下方法:
-
梯度