video2gif-软件 https://www.video2edit.com/zh/result#j=a1e87457-6aff-45f2-b43e-4f2390d7726ahttps://www.freeconvert.com/convert/video-to-gif/download
大语言模型生成无人系统(如机械臂、无人机等)可以执行的指令序列 大语言模型生成无人系统(如机械臂、无人机等)可以执行的指令序列涉及将自然语言指令转化为具体的、可执行的指令集合。以下是一个详细的流程,展示了如何从自然语言指令生成无人系统的执行指令序列。
智慧语音助手学习 近年来,随着深度学习技术的发展,特别是序列标注任务(如基于条件随机场的序列标注)和预训练语言模型(如BERT、GPT等),槽位填充在对话系统中的精度和效率有了显著提升。这个技术路线图涵盖了基于大模型的语音助理系统开发的主要步骤和关键技术,帮助产品经理规划和管理整个开发过程,确保系统能够按照预期功能和性能要求进行实现和部署。:根据填充的槽位和识别的意图,决定系统如何响应用户,可能涉及到后续的询问、确认或直接操作后端服务。:填充识别出的槽位,将其具体的值提取出来,并与系统的后端服务进行集成,以完成用户的请求。
深度学习-注意力机制和分数 注意力机制源于对人类视觉的研究,描述了人类在处理大量信息时,会选择性地关注某些信息而忽略其他信息的过程。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,这种机制被称为注意力机制。注意力机制是一种强大的工具,它通过模拟人类处理信息的方式,帮助深度学习模型更加高效地处理大量数据。随着研究的深入,注意力机制在各个领域的应用也将越来越广泛。注意力分数在注意力机制中扮演着关键角色,它决定了模型在处理信息时对不同部分的关注程度。
深度学习-语言模型 语言模型的核心思想是通过对大量文本数据的训练,学习到语言的统计规律,进而能够预测下一个词或序列的概率。序列模型是一类用于处理序列数据的模型,这些序列数据可以是离散的(如文本、时间序列上的符号)或连续的(如股票价格、传感器数据)。:虽然两者都使用概率作为评估指标,但语言模型通常使用困惑度(Perplexity)来评估模型在测试集上的性能,而序列模型则可能使用不同的评估指标,如准确率、召回率、F1分数等。:序列模型是一个更通用的概念,它涵盖了所有处理序列数据的模型,包括但不限于文本数据。
深度学习-序列模型 序列模型是输入输出均为序列数据的模型,它能够将输入序列数据转换为目标序列数据。常见的序列模型类型包括一对一、一对多、多对一、部分多对多和完全多对多。序列模型是一种强大的工具,能够处理各种序列数据并生成有用的输出。随着深度学习技术的不断发展,序列模型在自然语言处理、语音识别等领域的应用越来越广泛,并持续推动着这些领域的发展。
智能时代下,人机交互和虚拟现实的机遇和挑战 人机交互的本质解决什么问题:以前提升人和系统交互的效率,目前人工智能越来越强,人需要影响的因素越来越小,后面还是不是来提高人利用系统的效率,而是通过人机交互来提升用户本身的情感抚慰。主流代表性产品,都需要后端大模型支持,把人的智能和机器智能融合起来。比尔盖茨:第一个惊喜是图形学界面,第二个是ai agent。人机交互为中心来看,下一代的人机协同,解决不确定的问题。把人类智能和机器智能结合起来。人机交互作为一个大方向,2019年以后是协同共进。
深度学习模型 深度学习网络模型是人工智能领域的重要分支,它通过模拟人脑神经网络的工作方式来处理数据并识别模式。以上是深度学习网络模型的一些主要类型及其特点。这些模型在各自的领域内取得了显著成果,推动了深度学习技术的发展。
深度学习-样式迁移 样式迁移(Neural Style Transfer)是计算机视觉领域中的一项技术,它允许用户将一张图片(样式图片)的风格迁移到另一张图片(内容图片)上,从而生成一张融合了两种图片特征的新图片。
深度学习-转置卷积 转置卷积(Transposed Convolution),也被称为反卷积(Deconvolution),是深度学习中的一种操作,特别是在卷积神经网络(CNN)中。它可以将一个低维度的特征图(如卷积层的输出)转换为更高维度的特征图(如上一层的输入),从而实现了上采样或反卷积的效果。在图像分割任务中,转置卷积可以用于在解码器中恢复原先的尺寸,从而对原图中的每个像素进行分类。与传统的上采样方法相比,转置卷积的上采样方式并非预设的插值方法,而是具有可学习的参数,可以通过网络学习来获取最优的上采样方式。
计算机视觉中-语义分割 与图像分类(为整个图像分配一个标签)和目标检测(识别和定位图像中的目标)不同,语义分割要求算法对图像进行更精细的理解,以区分同一类别中的不同对象实例(这通常被称为实例分割,但语义分割通常不考虑实例级别的区分)。语义分割是计算机视觉中的一个关键技术,它涉及对图像中的每个像素进行类别划分,从而识别出图像中的不同物体或区域。具体来说,语义分割就是按照“语义”给图像上目标类别中的每一点打上一个标签,使得不同种类的东西在图像上被区分开来,可以理解为像素级别的分类任务。这些标签用于指示图像中每个像素所属的类别。
物体检测算法-R-CNN,SSD,YOLO 目标检测算法主要分为两个类型(1)two-stage方法,如R-CNN系算法(region-based CNN),其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高。
深度学习需要做的事情 深度学习网络的训练和优化涉及多个方面,包括网络设计、数据准备、特征提取、调参等。虽然调参是优化模型性能的关键步骤之一,但网络的设计和数据的准备同样重要。综合考虑所有这些因素,才能构建高性能和泛化能力强的深度学习模型。因此,深度学习网络并不仅仅是调参,而是一个涉及多个环节的复杂过程。
卷积神经网络-ResNet ResNet(Residual Network)是由Kaiming He等人在2015年提出的一个深度学习模型架构,它通过引入残差连接(Residual Connection)来解决深度神经网络训练过程中的梯度消失和梯度爆炸问题。ResNet在ImageNet图像识别挑战赛上取得了非常好的成绩,并且被广泛应用于各种计算机视觉任务。ResNet有几个不同版本,如ResNet-18、ResNet-34、ResNet-50、ResNet-101和ResNet-152等,它们的主要区别在于网络的深度和参数数量。
GoogleLeNet-含并行连接的网络 GoogleLeNet(Inception v1)是一个创新的深度卷积神经网络模型,它通过引入“Inception模块”和多尺度特征提取的策略,显著提高了模型的参数效率、计算效率和分类准确率。GoogleLeNet的成功不仅证明了深度学习在计算机视觉领域的强大潜力,而且也为后续更深、更复杂的卷积神经网络模型(如Inception v2、Inception v3、Inception v4等)的研究和应用提供了有益的启示。
卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型 卷积神经网络从LeNet-5到自适应卷积网络,经历了多个重要的发展阶段,形式逐渐丰富和复杂。这些模型不仅在图像分类、物体检。卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型。
网络中的网络-NiN NiN是一个创新的深度卷积神经网络模型,它通过引入“网络中的网络”概念和1x1的卷积核设计,显著提高了模型的非线性能力、特征提取能力和参数效率。NiN的成功证明了深度学习在计算机视觉领域的进一步潜力,并为后续更深、更复杂的卷积神经网络模型的研究和应用提供了有益的启示。